scholarly journals Inhibitory Effects of CaCl2 and Pectin Methylesterase on Fruit Softening of Raspberry during Cold Storage

Horticulturae ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 1
Author(s):  
Ran Yan ◽  
Cong Han ◽  
Maorun Fu ◽  
Wenxiao Jiao ◽  
Weihao Wang

Quality of raspberry fruit experiences a rapid decline after harvest due to its vulnerable texture and high moisture content. Application of calcium chloride (CaCl2) combined with pectin methylesterase (PME) is efficient in delaying fruit softening. In this study, the effects of exogenous CaCl2 alone or in combination with PME on the structure of the cell wall, the molecular properties of pectin, and the amount of free water of raspberry during postharvest storage were investigated. The results showed that CaCl2 combined with PME treatment could maintain fruit firmness and inhibit weight loss. The treatment of CaCl2+PME maintained the cell wall structure via sustaining middle lamella integrity and reducing the activities of cell wall-degrading enzymes, such as polygalacturonase, pectin methylesterase, β-galactosidase, α-L-arabinofuranosidase, and β-xylosidase. In addition, CaCl2+PME treatment could effectively increase the content of chelate-soluble pectin (CSP) and develop a cross-linked structure between Ca2+ and CSP. Moreover, CaCl2+PME treatment was of benefit in maintaining free water content. CaCl2 in combination with PME treatment could be a promising method for inhibiting softening and maintaining the quality of postharvest raspberry during cold storage.

Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1649
Author(s):  
Hyang-Lan Eum ◽  
Seung-Hyun Han ◽  
Eun-Jin Lee

Improved methods are needed to extend the shelf life of strawberry fruits. The objective of this study was to determine the postharvest physiological mechanism of high-CO2 treatment in strawberries. Harvested strawberries were stored at 10 °C after 3 h of exposure to a treatment with 30% CO2 or air. Pectin and gene expression levels related to cell wall degradation were measured to assess the high-CO2 effects on the cell wall and lipid metabolism. Strawberries subjected to high-CO2 treatment presented higher pectin content and firmness and lower decay than those of control fruits. Genes encoding cell wall-degrading enzymes (pectin methylesterase, polygalacturonase, and pectate lyase) were downregulated after high-CO2 treatment. High-CO2 induced the expression of oligogalacturonides, thereby conferring defense against Botrytis cinerea in strawberry fruits, and lowering the decay incidence at seven days after its inoculation. Our findings suggest that high-CO2 treatment can maintain strawberry quality by reducing decay and cell wall degradation.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4622
Author(s):  
Piotr Kowalik ◽  
Tomasz Lipa ◽  
Zenia Michałojć ◽  
Mirosława Chwil

Calcium is one of the most poorly reutilized nutrients. Its deficiencies cause various physiological disturbances and, consequently, reduce the quantity and quality of yields. Reduced content of Ca2+ ions in cells leads to development of, e.g., bitter pit in apples. Efficient and instantaneous mitigation of Ca2+ deficiencies is provided by foliar feeding. There are no detailed data on the effect of foliar feeding with various calcium forms on the cell structure or on the microanalysis and mapping of this element in apple fruit cells. Therefore, we carried out comparative studies of the ultrastructure of epidermis and hypodermis cells, to assess the content and distribution of calcium in the cell wall, cytoplasmic membrane, cytoplasm, and precipitates of Malus domestica Borkh. ‘Szampion’ fruit exposed to four Ca treatments, including the control with no additional Ca supplementation (I) and foliar applications of Ca(NO3)2 (II), CaCl2 (III), and Ca chelated with EDTA (IV). Light and transmission electron microscopy and an X-ray microanalyzer were used and showed a beneficial effect of calcium preparations on the ultrastructure of fruit epidermis and hypodermis cells, manifested in the presence of a normally developed cell wall with a regular middle lamella, preserved continuity of cytoplasmic membranes, and stabilized cell structure. In the selected elements of apical epidermis cells, the highest level of Ca2+ ions was detected in the middle lamella, cell wall, plasmalemma, and cytoplasm. The highest increase in the Ca2+ content in these cell constituents was recorded in treatment IV, whereas the lowest value of the parameters was noted in variant III.


2009 ◽  
pp. 931-934 ◽  
Author(s):  
M.A. Quesada ◽  
S. Posé ◽  
N. Santiago-Doménech ◽  
R. Sesmero ◽  
M.C. Molina ◽  
...  

2006 ◽  
Vol 33 (2) ◽  
pp. 103 ◽  
Author(s):  
David A. Brummell

Fruit softening during ripening involves a coordinated series of modifications to the polysaccharide components of the primary cell wall and middle lamella, resulting in a weakening of the structure. Degradation of polysaccharides and alterations in the bonding between polymers cause an increase in cell separation and a softening and swelling of the wall, which, combined with alterations in turgor, bring about fruit softening and textural changes. A wide range in the extent of cell wall pectic modifications has been observed between species, whereas the depolymerisation of xyloglucan is relatively limited and more consistent. The earliest events to be initiated are usually a loss of pectic galactan side chains and the depolymerisation of matrix glycans, which may begin before ripening, followed by a loss of pectic arabinan side chains and pectin solubilisation. The depolymerisation of pectins may begin during early to mid-ripening, but is usually most pronounced late in ripening. However, some of these events may be absent or occur at very low levels in some species. Cell wall swelling may be related to a loosening of the xyloglucan–cellulose network and to pectin solubilisation, and these processes combined with the loss of pectic side chains increase wall porosity. An increase in wall porosity later in ripening may allow increased access of degradative enzymes to their substrates.


1989 ◽  
Vol 67 (3) ◽  
pp. 817-821 ◽  
Author(s):  
A. Raymond Miller ◽  
Joseph P. Dalmasso ◽  
Dale W. Kretchman

Variation of cell wall degrading enzyme activities and tissue firmness from the petal senescence to overripe stages of fruit development was studied in greenhouse-grown cucumbers (Cucumis sativus L. cv. Heinz 3534). Cucumbers exhibited a typical sigmoidal growth curve with a short lag phase (0–8 days after pollination) and extended log phase (8–28 days) followed by a stationary phase. Mesocarp firmness decreased between 10 and 20 days after pollination, then increased until 32 days after pollination. This decrease of mesocarp firmness was accompanied by increased activity of cellulase (3.5-fold), polygalacturonase (20-fold), pectin methylesterase (4-fold), and xylanase (9-fold). By contrast, carpel tissue firmness declined from 8–20 days after pollination, and remained low until 32 days after pollination. Only polygalacturonase and xylanase activities exhibited significant increases (5- and 6-fold, respectively) during softening of this tissue. Further, these peaks of enzyme activity in the carpel occurred 10 days before the corresponding peaks in the mesocarp. These data suggest that mesocarp and carpel tissues of cucumber soften by similar, but not identical mechanisms.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1092B-1092 ◽  
Author(s):  
Megumi Ishimaru ◽  
David L. Smith ◽  
Kenneth C. Gross

Fruit softening occurs by several mechanisms, including modifications of cell wall structure by wall degrading enzymes. The most prominent change in tomato fruit pericarp wall composition is the loss of galactosyl residues throughout development and especially during ripening. In order to understand the role of galactosyl turnover in fruit softening, we successfully produced three recombinant tomato β-galactosidase/exo-galactanase (TBG) fusion proteins in yeast. TBG1, 4 and 5 enzyme properties and substrate specificities were assessed. Optimum pH of TBG1, 4 and 5 was 5.0, 4.0, and 4.5 and optimum temperature was 40∼50, 40, and 40 °C, respectively. The K ms for TBG1, 4 and 5 were 7.99, 0.09, and 2.42 mm, respectively, using p-nitrophenyl-β-D-galactopyranoside as substrate. Using synthetic and plant-derived substrates, TBG1 and 5 released galactosyl residues from 1 → 4 linkages. TBG4 released galactosyl residues from a wide range of plant-derived oligosaccharides and polysaccharides. Using tomato fruit cell wall material, TBG1, TBG4 and TBG5 released galactosyl residues from a variety of fruit stages and cell wall fractions. TBG4 released the most galactosyl residues from the ASP fraction and especially the ASP fraction from fruit at the turning stage. Interestingly, even though walls from Turning fruit stage contain less total galactosyl residues than at the Mature Green stage, TBG4 released 3–4 fold more galactose from the CSP and ASP fractions from Turning fruit. These results suggest that changes in structure of wall pectic polysaccharides leading up to the Turning stage may cause the wall to become more susceptible to hydrolysis by the TBG4 product.


1992 ◽  
Vol 117 (1) ◽  
pp. 114-118 ◽  
Author(s):  
J.G. Luza ◽  
R. van Gorsel ◽  
V.S. Polito ◽  
A.A. Kader

Fruits of mid- (`O'Henry'), late (`Airtime'), and extra-late-season (`Autumn Gem') peach [Prunus persica (L.) Batsch] cultivars were examined for changes in cell wall structure and cytochemistry that accompany the onset of mealiness and leatheriness of the mesocarp due to chilling injury. The peaches were stored at 10C for up to 18 days or at SC for up to 29 days. Plastic-embedded sections were stained by the Schiff's-periodic acid reaction, Calcofluor white MR2, and Coriphosphine to demonstrate total insoluble carbohydrates, ß-1,4 glucans, and pectins, respectively. Mealiness was characterized by separation of mesocarp parenchyma cells leading to increased intercellular spaces and accumulation of pectic substances in the intercellular matrix. Little structural change was apparent in the cellulosic component of the cell walls of these fruits. In leathery peaches, the mesocarp parenchyma cells collapsed, intercellular space continued to increase, and pectin-positive staining in the intercellular matrix increased greatly. In addition, the component of the cell walls that stained positively for ß-1,4 glucans became thickened relative to freshly harvested or mealy fruit. At the ultrastructural level, dissolution of the middle lamella, cell separation, irregular thickening of the primary wall, and plasmolysis of the mesocarp parenchyma cells were seen as internal breakdown progressed.


2008 ◽  
Vol 133 (2) ◽  
pp. 290-299 ◽  
Author(s):  
Ahmad Sattar Khan ◽  
Zora Singh

This research was carried out to extend the postharvest storage of japanese plum (Prunus salicina Lindl. cv. Tegan Blue), which has a short shelf life limiting its export potential. The effects of 1.0 μL·L−1 1-methylcyclopropene (1-MCP) and modified atmosphere packaging (MAP), alone or in combination, on quality of mature japanese plum fruit during storage (0 ± 1 °C and 90% ± 5% relative humidity) were investigated. The activities of enzymes of ethylene biosynthesis [1-aminocyclopropane-1-carboxylic acid synthase (ACS), 1-aminocyclopropane-1-carboxylic acid oxidase (ACO), and 1-aminocyclopropane-1-carboxylic acid (ACC) content] and those of cell wall-associated enzymes [exo-polygalacturonase (exo-PG), endo-polygalacturonase (endo-PG), pectin esterase (PE), and endo-1,4-β-D-glucanase (EGase)] were also measured. 1-MCP-treated fruit stored in normal atmosphere or in MAP had lower ACC content and inhibited ethylene production with reduced ACS and ACO activities compared with fruit stored in MAP and in normal atmosphere. Similarly, 1-MCP-treated fruit, stored either in normal atmosphere or in MAP, were firmer with reduced exo-PG, endo-PG, PE, and EGase activities compared with fruit stored in MAP and in normal atmosphere. During storage as well as during ripening, fruit stored in MAP exhibited a higher rate of respiration compared with other treatments. MAP exacerbated the effect of 1-MCP in reduction of ethylene production and fruit softening. 1-MCP application in combination with MAP after 5 and 7 weeks of storage delayed the fruit ripening by 10 and 8 days in contrast with control fruit, respectively. During storage, and as well as in ripe fruit, weight loss was reduced in fruit stored in MAP either with or without 1-MCP application. Control fruit and 1-MCP-treated fruit, stored in a normal atmosphere or in MAP, had the same values for the following parameters: chromaticity value L*, C*, and hue angle, titratable acidity, and concentrations of soluble solids, ascorbic acid, and total antioxidants. In conclusion, 1-MCP application in combination with MAP can be used effectively to reduce the ethylene biosynthesis and fruit softening during cold storage and to extend the storage life up to 7 weeks followed by 8 d of ripening without any adverse effects on the quality of ripe fruit.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Cheng Xue ◽  
Si-Cong Guan ◽  
Jian-Qing Chen ◽  
Chen-Jin Wen ◽  
Jian-Fa Cai ◽  
...  

Abstract Background Pectin methylesterase (PME) is a hydrolytic enzyme that catalyzes the demethylesterification of homogalacturonans and controls pectin reconstruction, being essential in regulation of cell wall modification. During fruit ripening stage, PME-mediated cell wall remodeling is an important process to determine fruit firmness and softening. Strawberry fruit is a soft fruit with a short postharvest life, due to a rapid loss of firm texture. Hence, preharvest improvement of strawberry fruit rigidity is a prerequisite for extension of fruit refreshing time. Although PME has been well characterized in model plants, knowledge regarding the functionality and evolutionary property of PME gene family in strawberry remain limited. Results A total of 54 PME genes (FvPMEs) were identified in woodland strawberry (Fragaria vesca ‘Hawaii 4’). Phylogeny and gene structure analysis divided these FvPME genes into four groups (Group 1–4). Duplicate events analysis suggested that tandem and dispersed duplications effectively contributed to the expansion of the PME family in strawberry. Through transcriptome analysis, we identified FvPME38 and FvPME39 as the most abundant-expressed PMEs at fruit ripening stages, and they were positively regulated by abscisic acid. Genetic manipulation of FvPME38 and FvPME39 by overexpression and RNAi-silencing significantly influences the fruit firmness, pectin content and cell wall structure, indicating a requirement of PME for strawberry fruit softening. Conclusion Our study globally analyzed strawberry pectin methylesterases by the approaches of phylogenetics, evolutionary prediction and genetic analysis. We verified the essential role of FvPME38 and FvPME39 in regulation of strawberry fruit softening process, which provided a guide for improving strawberry fruit firmness by modifying PME level.


Sign in / Sign up

Export Citation Format

Share Document