Estimation of Spatial and Temporal Groundwater Balance Components in Khadir Canal Sub-Division, Chaj Doab, Pakistan

Hydrology ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 178
Author(s):  
Muhammad Aslam ◽  
Ali Salem ◽  
Vijay P. Singh ◽  
Muhammad Arshad

Evaluation of the spatial and temporal distribution of water balance components is required for efficient and sustainable management of groundwater resources, especially in semi-arid and data-poor areas. The Khadir canal sub-division, Chaj Doab, Pakistan, is a semi-arid area which has shallow aquifers which are being pumped by a plethora of wells with no effective monitoring. This study employed a monthly water balance model (water and energy transfer among soil, plants, and atmosphere)—WetSpass-M—to determine the groundwater balance components on annual, seasonal, and monthly time scales for a period of the last 20 years (2000–2019) in the Khadir canal sub-division. The spatial distribution of water balance components depends on soil texture, land use, groundwater level, slope, and meteorological conditions. Inputs for the model included data on topography, slope, soil, groundwater depth, slope, land use, and meteorological data (e.g., precipitation, air temperature, potential evapotranspiration, and wind speed) which were prepared using ArcGIS. The long-term average annual rainfall (455.7 mm) is distributed as 231 mm (51%) evapotranspiration, 109.1 mm (24%) surface runoff, and 115.6 mm (25%) groundwater recharge. About 51% of groundwater recharge occurs in summer, 18% in autumn, 14% in winter, and 17% in spring. Results showed that the WetSpass-M model properly simulated the water balance components of the Khadir canal sub-division. The WetSpass-M model’s findings can be used to develop a regional groundwater model for simulation of different aquifer management scenarios in the Khadir area, Pakistan.

2021 ◽  
Vol 9 (2) ◽  
pp. 20-33
Author(s):  
Hassan Al-Badry ◽  
Mohammed S. Shamkhi

AbstractGroundwater is an important water source, especially in arid and semi-arid areas. Recharge is critical to managing and analyzing groundwater resources despite estimation difficulty due to temporal and spatial change. The study aim is to estimate annual groundwater recharge for the eastern Wasit Province part, Iraq. Where suffers from a surface water shortage due to the region's high elevation above Tigris River water elevation by about 60 m, it is necessary to search for alternative water sources, such as groundwater use. The spatially distributed WetSpass model was used to estimate the annual recharge. The inputs for the model were prepared using the ARC-GIS program, which includes the topography and slope grid, soil texture grid, land use, groundwater level grid, and meteorological data grids for the study area for the period (2014-2019). The result shows that the annual recharge calculated using the WetSpass model (2014-2019) varied of 0 to 65.176 mm/year at an average of 27.117 mm/year, about 10.8%, while the rate of the surface runoff was 5.2% and Evapotranspiration formed 83.33% of the annual rainfall rate of 251.192 mm. The simulation results reveal that the WetSpass model simulates the components of the hydrological water budget correctly. For managing and planning available water resources, a best grasp of the simulation of long-range average geographical distribution around the water balance components is beneficial.


Hydrology ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 39 ◽  
Author(s):  
Salem S. Gharbia ◽  
Laurence Gill ◽  
Paul Johnston ◽  
Francesco Pilla

Parametrising the spatially distributed dynamic catchment water balance is a critical factor in studying the hydrological system responses to climate and land use changes. This study presents the development of a geographic information system (GIS)-based set of algorithms (geographical spatially distributed water balance model (GEO-CWB)), which is developed from integrating physical, statistical, and machine learning models. The GEO-CWB tool has been developed to simulate and predict future spatially distributed dynamic water balance using GIS environment at the catchment scale in response to the future changes in climate variables and land use through a user-friendly interface. The tool helps in bridging the gap in quantifying the high-resolution dynamic water balance components for the large catchments by reducing the computational costs. Also, this paper presents the application and validation of GEO-CWB on the Shannon catchment in Ireland as an example of a large and complicated hydrological system. It can be concluded that climate and land use changes have significant effects on the spatial and temporal patterns of the different water balance components of the catchment.


2007 ◽  
Vol 4 (6) ◽  
pp. 4265-4295 ◽  
Author(s):  
J. Dams ◽  
S. T. Woldeamlak ◽  
O. Batelaan

Abstract. Land-use change and climate change, along with groundwater pumping are frequently indicated to be the main human-induced factors influencing the groundwater system. Up till now, research has mainly been focusing on the effect of the water quality of these human-induced changes on the groundwater system, often neglecting changes in quantity. The focus in this study is on the impact of land-use changes in the near future, from 2000 until 2020, on the groundwater quantity and the general hydrologic balance of a sub-catchment of the Kleine Nete, Belgium. This study tests a new methodology which involves coupling a land-use change model with a water balance model and a groundwater model. The future land-use is modelled with the CLUE-S model. Four scenarios (A1, A2, B1 and B2) based on the Special Report on Emission Scenarios (SRES) are used for the land-use modelling. Water balance components, groundwater level and baseflow are simulated using the WetSpass model in conjunction with a MODFLOW groundwater model. Results show that the average recharge slowly decreases for all scenarios, the decreases are 2.9, 1.6, 1.8 and 0.8% for respectively scenario A1, A2, B1 and B2. The predicted reduction in recharge results in a small decrease of the average groundwater level, ranging from 2.5 cm for scenario A1 to 0.9 cm for scenario B2, and a reduction of the total baseflow with maximum 2.3% and minimum 0.7% respectively for scenario A1 and B2. Although these average values do not indicate significant changes for the groundwater system, spatial analysis of the changes shows the changes are concentrated in the neighbourhood of the major cities in the study areas. It is therefore important for spatial managers to take the groundwater system into account for reducing the negative impacts of land-use and climate change as much as possible.


2010 ◽  
pp. 7-11
Author(s):  
Susheel Dangol

Pressure on drinking water is increasing tremendously due to the increase in population in Kathmandu valley. Groundwater is serving as one of main source of water supply in the valley. Due to the scarcity of surface water and high demand for drinking water, excess extraction of groundwater than it replenishes may cause negative effect to Kathmandu valley like subduction. Thus, proper quantification of groundwater recharge must be done to de! ne sustainable extraction of the groundwater. This study is conducted with the aim to demonstrate the simple water balance model within the GIS environment in order to quantify the spatial distribution of groundwater recharge. The simple water balance model Thornthwaite and Marther (1955) was used to quantify the water balance components in the upper bagmati watershed. The study shows that the groundwater recharge is high at the northern part specifically where there is high water holding capacity.


2020 ◽  
Author(s):  
Nunzio Romano ◽  
Carolina Allocca ◽  
Roberto Deidda ◽  
Paolo Nasta

<p>Water balance components depend on annual rainfall amount and seasonality in Mediterranean catchments. A high percentage of the annual rainfall occurs between late fall and early spring and feeds natural and artificial water reservoirs. This amount of water stored in the mild-rainy season is used to offset rainfall shortages in the hot-dry season (between late spring and early fall). Observed seasonal anomalies in historical records are quite episodic, but an increase of their frequency might exacerbate water stress or water excess if the rainy season shortens or extends its duration, e.g. due to climate change. Hydrological models are useful tools to assess the impact of seasonal anomalies on the water balance components and this study evaluates the sensitivity of water yield, evapotranspiration and groundwater recharge on changes in rainfall seasonality by using the Soil Water Assessment Tool (SWAT) model. The study area is the Upper Alento River Catchment (UARC) in southern Italy where a long time-series of daily rainfall is available from 1920 to 2018. To assess seasonality anomalies, we compare two approaches: a “static” approach based on the Standardized Precipitation Index (SPI), and a “dynamic” approach that identifies the rainy season by considering rainfall magnitude, timing, and duration. The former approach rigidly selects three seasonal features, namely rainy, dry, and transition seasons, the latter being occasionally characterized by similar properties to the rainy or dry periods. The “dynamic” approach, instead, is based on a time-variant duration of the rainy season and enables to corroborate the aforementioned results within a probabilistic framework. A dry seasonal anomaly is characterized by a decrease of 241 mm in annual average rainfall inducing a concurrent decrease of 116 mm in annual average water yield, 60 mm in actual evapotranspiration and 66 mm in groundwater recharge. We show that the Budyko curve is sensitive to the seasonality regime in UARC by questioning the implicit assumption of temporal steady-state between annual average dryness and evaporative index. Although the duration of the rainy season does not exert a major control on water balance, we have been able to identify seasonal-dependent regression equations linking water yield to dryness index over the rainy season.</p>


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1433
Author(s):  
Navneet Kumar ◽  
Asia Khamzina ◽  
Patrick Knöfel ◽  
John P. A. Lamers ◽  
Bernhard Tischbein

Climate change is likely to decrease surface water availability in Central Asia, thereby necessitating land use adaptations in irrigated regions. The introduction of trees to marginally productive croplands with shallow groundwater was suggested for irrigation water-saving and improving the land’s productivity. Considering the possible trade-offs with water availability in large-scale afforestation, our study predicted the impacts on water balance components in the lower reaches of the Amudarya River to facilitate afforestation planning using the Soil and Water Assessment Tool (SWAT). The land-use scenarios used for modeling analysis considered the afforestation of 62% and 100% of marginally productive croplands under average and low irrigation water supply identified from historical land-use maps. The results indicate a dramatic decrease in the examined water balance components in all afforestation scenarios based largely on the reduced irrigation demand of trees compared to the main crops. Specifically, replacing current crops (mostly cotton) with trees on all marginal land (approximately 663 km2) in the study region with an average water availability would save 1037 mln m3 of gross irrigation input within the study region and lower the annual drainage discharge by 504 mln m3. These effects have a considerable potential to support irrigation water management and enhance drainage functions in adapting to future water supply limitations.


2019 ◽  
Vol 65 (3) ◽  
pp. 470-486 ◽  
Author(s):  
Edgar Rodríguez-Huerta ◽  
Martí Rosas-Casals ◽  
Laura Margarita Hernández-Terrones

2012 ◽  
Vol 16 (8) ◽  
pp. 2485-2497 ◽  
Author(s):  
B. Leterme ◽  
D. Mallants ◽  
D. Jacques

Abstract. The sensitivity of groundwater recharge to different climate conditions was simulated using the approach of climatic analogue stations, i.e. stations presently experiencing climatic conditions corresponding to a possible future climate state. The study was conducted in the context of a safety assessment of a future near-surface disposal facility for low and intermediate level short-lived radioactive waste in Belgium; this includes estimation of groundwater recharge for the next millennia. Groundwater recharge was simulated using the Richards based soil water balance model HYDRUS-1D and meteorological time series from analogue stations. This study used four analogue stations for a warmer subtropical climate with changes of average annual precipitation and potential evapotranspiration from −42% to +5% and from +8% to +82%, respectively, compared to the present-day climate. Resulting water balance calculations yielded a change in groundwater recharge ranging from a decrease of 72% to an increase of 3% for the four different analogue stations. The Gijon analogue station (Northern Spain), considered as the most representative for the near future climate state in the study area, shows an increase of 3% of groundwater recharge for a 5% increase of annual precipitation. Calculations for a colder (tundra) climate showed a change in groundwater recharge ranging from a decrease of 97% to an increase of 32% for four different analogue stations, with an annual precipitation change from −69% to −14% compared to the present-day climate.


Sign in / Sign up

Export Citation Format

Share Document