scholarly journals Wave2Vec: Vectorizing Electroencephalography Bio-Signal for Prediction of Brain Disease

Author(s):  
Seonho Kim ◽  
Jungjoon Kim ◽  
Hong-Woo Chun

Interest in research involving health-medical information analysis based on artificial intelligence, especially for deep learning techniques, has recently been increasing. Most of the research in this field has been focused on searching for new knowledge for predicting and diagnosing disease by revealing the relation between disease and various information features of data. These features are extracted by analyzing various clinical pathology data, such as EHR (electronic health records), and academic literature using the techniques of data analysis, natural language processing, etc. However, still needed are more research and interest in applying the latest advanced artificial intelligence-based data analysis technique to bio-signal data, which are continuous physiological records, such as EEG (electroencephalography) and ECG (electrocardiogram). Unlike the other types of data, applying deep learning to bio-signal data, which is in the form of time series of real numbers, has many issues that need to be resolved in preprocessing, learning, and analysis. Such issues include leaving feature selection, learning parts that are black boxes, difficulties in recognizing and identifying effective features, high computational complexities, etc. In this paper, to solve these issues, we provide an encoding-based Wave2vec time series classifier model, which combines signal-processing and deep learning-based natural language processing techniques. To demonstrate its advantages, we provide the results of three experiments conducted with EEG data of the University of California Irvine, which are a real-world benchmark bio-signal dataset. After converting the bio-signals (in the form of waves), which are a real number time series, into a sequence of symbols or a sequence of wavelet patterns that are converted into symbols, through encoding, the proposed model vectorizes the symbols by learning the sequence using deep learning-based natural language processing. The models of each class can be constructed through learning from the vectorized wavelet patterns and training data. The implemented models can be used for prediction and diagnosis of diseases by classifying the new data. The proposed method enhanced data readability and intuition of feature selection and learning processes by converting the time series of real number data into sequences of symbols. In addition, it facilitates intuitive and easy recognition, and identification of influential patterns. Furthermore, real-time large-capacity data analysis is facilitated, which is essential in the development of real-time analysis diagnosis systems, by drastically reducing the complexity of calculation without deterioration of analysis performance by data simplification through the encoding process.

AI Magazine ◽  
2015 ◽  
Vol 36 (1) ◽  
pp. 99-102
Author(s):  
Tiffany Barnes ◽  
Oliver Bown ◽  
Michael Buro ◽  
Michael Cook ◽  
Arne Eigenfeldt ◽  
...  

The AIIDE-14 Workshop program was held Friday and Saturday, October 3–4, 2014 at North Carolina State University in Raleigh, North Carolina. The workshop program included five workshops covering a wide range of topics. The titles of the workshops held Friday were Games and Natural Language Processing, and Artificial Intelligence in Adversarial Real-Time Games. The titles of the workshops held Saturday were Diversity in Games Research, Experimental Artificial Intelligence in Games, and Musical Metacreation. This article presents short summaries of those events.


2021 ◽  
pp. 219256822110269
Author(s):  
Fabio Galbusera ◽  
Andrea Cina ◽  
Tito Bassani ◽  
Matteo Panico ◽  
Luca Maria Sconfienza

Study Design: Retrospective study. Objectives: Huge amounts of images and medical reports are being generated in radiology departments. While these datasets can potentially be employed to train artificial intelligence tools to detect findings on radiological images, the unstructured nature of the reports limits the accessibility of information. In this study, we tested if natural language processing (NLP) can be useful to generate training data for deep learning models analyzing planar radiographs of the lumbar spine. Methods: NLP classifiers based on the Bidirectional Encoder Representations from Transformers (BERT) model able to extract structured information from radiological reports were developed and used to generate annotations for a large set of radiographic images of the lumbar spine (N = 10 287). Deep learning (ResNet-18) models aimed at detecting radiological findings directly from the images were then trained and tested on a set of 204 human-annotated images. Results: The NLP models had accuracies between 0.88 and 0.98 and specificities between 0.84 and 0.99; 7 out of 12 radiological findings had sensitivity >0.90. The ResNet-18 models showed performances dependent on the specific radiological findings with sensitivities and specificities between 0.53 and 0.93. Conclusions: NLP generates valuable data to train deep learning models able to detect radiological findings in spine images. Despite the noisy nature of reports and NLP predictions, this approach effectively mitigates the difficulties associated with the manual annotation of large quantities of data and opens the way to the era of big data for artificial intelligence in musculoskeletal radiology.


2021 ◽  
Vol 12 (4) ◽  
pp. 1035-1040
Author(s):  
Vamsi Krishna Vedantam

Natural Language Processing using Deep Learning is one of the critical areas of Artificial Intelligence to focus in the next decades. Over the last few years, Artificial intelligence had evolved by maturing critical areas in research and development. The latest developments in Natural Language Processing con- tributed to the successful implementation of machine translations, linguistic models, Speech recognitions, automatic text generations applications. This paper covers the recent advancements in Natural Language Processing using Deep Learning and some of the much-waited areas in NLP to look for in the next few years. The first section explains Deep Learning architecture, Natural Language Processing techniques followed by the second section that highlights the developments in NLP using Deep learning and the last part by concluding the critical takeaways from my article.


2021 ◽  
Author(s):  
Joe Zhang ◽  
Stephen Whebell ◽  
Jack Gallifant ◽  
Sanjay Budhdeo ◽  
Heather Mattie ◽  
...  

The global clinical artificial intelligence (AI) research landscape is constantly evolving, with heterogeneity across specialties, disease areas, geographical representation, and development maturity. Continual assessment of this landscape is important for monitoring progress. Taking advantage of developments in natural language processing (NLP), we produce an end-to-end NLP pipeline to automate classification and characterization of all original clinical AI research on MEDLINE, outputting real-time results to a public, interactive dashboard (https://aiforhealth.app/).


2020 ◽  
pp. 1-38
Author(s):  
Amandeep Kaur ◽  
◽  
Anjum Mohammad Aslam ◽  

In this chapter we discuss the core concept of Artificial Intelligence. We define the term of Artificial Intelligence and its interconnected terms such as Machine learning, deep learning, Neural Networks. We describe the concept with the perspective of its usage in the area of business. We further analyze various applications and case studies which can be achieved using Artificial Intelligence and its sub fields. In the area of business already numerous Artificial Intelligence applications are being utilized and will be expected to be utilized more in the future where machines will improve the Artificial Intelligence, Natural language processing, Machine learning abilities of humans in various zones.


10.2196/21453 ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. e21453
Author(s):  
Yvonne W Leung ◽  
Elise Wouterloot ◽  
Achini Adikari ◽  
Graeme Hirst ◽  
Daswin de Silva ◽  
...  

Background Cancer and its treatment can significantly impact the short- and long-term psychological well-being of patients and families. Emotional distress and depressive symptomatology are often associated with poor treatment adherence, reduced quality of life, and higher mortality. Cancer support groups, especially those led by health care professionals, provide a safe place for participants to discuss fear, normalize stress reactions, share solidarity, and learn about effective strategies to build resilience and enhance coping. However, in-person support groups may not always be accessible to individuals; geographic distance is one of the barriers for access, and compromised physical condition (eg, fatigue, pain) is another. Emerging evidence supports the effectiveness of online support groups in reducing access barriers. Text-based and professional-led online support groups have been offered by Cancer Chat Canada. Participants join the group discussion using text in real time. However, therapist leaders report some challenges leading text-based online support groups in the absence of visual cues, particularly in tracking participant distress. With multiple participants typing at the same time, the nuances of the text messages or red flags for distress can sometimes be missed. Recent advances in artificial intelligence such as deep learning–based natural language processing offer potential solutions. This technology can be used to analyze online support group text data to track participants’ expressed emotional distress, including fear, sadness, and hopelessness. Artificial intelligence allows session activities to be monitored in real time and alerts the therapist to participant disengagement. Objective We aim to develop and evaluate an artificial intelligence–based cofacilitator prototype to track and monitor online support group participants’ distress through real-time analysis of text-based messages posted during synchronous sessions. Methods An artificial intelligence–based cofacilitator will be developed to identify participants who are at-risk for increased emotional distress and track participant engagement and in-session group cohesion levels, providing real-time alerts for therapist to follow-up; generate postsession participant profiles that contain discussion content keywords and emotion profiles for each session; and automatically suggest tailored resources to participants according to their needs. The study is designed to be conducted in 4 phases consisting of (1) development based on a subset of data and an existing natural language processing framework, (2) performance evaluation using human scoring, (3) beta testing, and (4) user experience evaluation. Results This study received ethics approval in August 2019. Phase 1, development of an artificial intelligence–based cofacilitator, was completed in January 2020. As of December 2020, phase 2 is underway. The study is expected to be completed by September 2021. Conclusions An artificial intelligence–based cofacilitator offers a promising new mode of delivery of person-centered online support groups tailored to individual needs. International Registered Report Identifier (IRRID) DERR1-10.2196/21453


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5526
Author(s):  
Andrew A. Gumbs ◽  
Isabella Frigerio ◽  
Gaya Spolverato ◽  
Roland Croner ◽  
Alfredo Illanes ◽  
...  

Most surgeons are skeptical as to the feasibility of autonomous actions in surgery. Interestingly, many examples of autonomous actions already exist and have been around for years. Since the beginning of this millennium, the field of artificial intelligence (AI) has grown exponentially with the development of machine learning (ML), deep learning (DL), computer vision (CV) and natural language processing (NLP). All of these facets of AI will be fundamental to the development of more autonomous actions in surgery, unfortunately, only a limited number of surgeons have or seek expertise in this rapidly evolving field. As opposed to AI in medicine, AI surgery (AIS) involves autonomous movements. Fortuitously, as the field of robotics in surgery has improved, more surgeons are becoming interested in technology and the potential of autonomous actions in procedures such as interventional radiology, endoscopy and surgery. The lack of haptics, or the sensation of touch, has hindered the wider adoption of robotics by many surgeons; however, now that the true potential of robotics can be comprehended, the embracing of AI by the surgical community is more important than ever before. Although current complete surgical systems are mainly only examples of tele-manipulation, for surgeons to get to more autonomously functioning robots, haptics is perhaps not the most important aspect. If the goal is for robots to ultimately become more and more independent, perhaps research should not focus on the concept of haptics as it is perceived by humans, and the focus should be on haptics as it is perceived by robots/computers. This article will discuss aspects of ML, DL, CV and NLP as they pertain to the modern practice of surgery, with a focus on current AI issues and advances that will enable us to get to more autonomous actions in surgery. Ultimately, there may be a paradigm shift that needs to occur in the surgical community as more surgeons with expertise in AI may be needed to fully unlock the potential of AIS in a safe, efficacious and timely manner.


2020 ◽  
Author(s):  
Yvonne W Leung ◽  
Elise Wouterloot ◽  
Achini Adikari ◽  
Graeme Hirst ◽  
Daswin de Silva ◽  
...  

BACKGROUND Cancer and its treatment can significantly impact the short- and long-term psychological well-being of patients and families. Emotional distress and depressive symptomatology are often associated with poor treatment adherence, reduced quality of life, and higher mortality. Cancer support groups, especially those led by health care professionals, provide a safe place for participants to discuss fear, normalize stress reactions, share solidarity, and learn about effective strategies to build resilience and enhance coping. However, in-person support groups may not always be accessible to individuals; geographic distance is one of the barriers for access, and compromised physical condition (eg, fatigue, pain) is another. Emerging evidence supports the effectiveness of online support groups in reducing access barriers. Text-based and professional-led online support groups have been offered by Cancer Chat Canada. Participants join the group discussion using text in real time. However, therapist leaders report some challenges leading text-based online support groups in the absence of visual cues, particularly in tracking participant distress. With multiple participants typing at the same time, the nuances of the text messages or red flags for distress can sometimes be missed. Recent advances in artificial intelligence such as deep learning–based natural language processing offer potential solutions. This technology can be used to analyze online support group text data to track participants’ expressed emotional distress, including fear, sadness, and hopelessness. Artificial intelligence allows session activities to be monitored in real time and alerts the therapist to participant disengagement. OBJECTIVE We aim to develop and evaluate an artificial intelligence–based cofacilitator prototype to track and monitor online support group participants’ distress through real-time analysis of text-based messages posted during synchronous sessions. METHODS An artificial intelligence–based cofacilitator will be developed to identify participants who are at-risk for increased emotional distress and track participant engagement and in-session group cohesion levels, providing real-time alerts for therapist to follow-up; generate postsession participant profiles that contain discussion content keywords and emotion profiles for each session; and automatically suggest tailored resources to participants according to their needs. The study is designed to be conducted in 4 phases consisting of (1) development based on a subset of data and an existing natural language processing framework, (2) performance evaluation using human scoring, (3) beta testing, and (4) user experience evaluation. RESULTS This study received ethics approval in August 2019. Phase 1, development of an artificial intelligence–based cofacilitator, was completed in January 2020. As of December 2020, phase 2 is underway. The study is expected to be completed by September 2021. CONCLUSIONS An artificial intelligence–based cofacilitator offers a promising new mode of delivery of person-centered online support groups tailored to individual needs. INTERNATIONAL REGISTERED REPORT DERR1-10.2196/21453


2021 ◽  
pp. 1-13
Author(s):  
Lamiae Benhayoun ◽  
Daniel Lang

BACKGROUND: The renewed advent of Artificial Intelligence (AI) is inducing profound changes in the classic categories of technology professions and is creating the need for new specific skills. OBJECTIVE: Identify the gaps in terms of skills between academic training on AI in French engineering and Business Schools, and the requirements of the labour market. METHOD: Extraction of AI training contents from the schools’ websites and scraping of a job advertisements’ website. Then, analysis based on a text mining approach with a Python code for Natural Language Processing. RESULTS: Categorization of occupations related to AI. Characterization of three classes of skills for the AI market: Technical, Soft and Interdisciplinary. Skills’ gaps concern some professional certifications and the mastery of specific tools, research abilities, and awareness of ethical and regulatory dimensions of AI. CONCLUSIONS: A deep analysis using algorithms for Natural Language Processing. Results that provide a better understanding of the AI capability components at the individual and the organizational levels. A study that can help shape educational programs to respond to the AI market requirements.


Sign in / Sign up

Export Citation Format

Share Document