scholarly journals The Role of the Primary Cell Wall in Plant Morphogenesis

2018 ◽  
Vol 19 (9) ◽  
pp. 2674 ◽  
Author(s):  
Derek Lamport ◽  
Li Tan ◽  
Michael Held ◽  
Marcia Kieliszewski

Morphogenesis remains a riddle, wrapped in a mystery, inside an enigma. It remains a formidable problem viewed from many different perspectives of morphology, genetics, and computational modelling. We propose a biochemical reductionist approach that shows how both internal and external physical forces contribute to plant morphogenesis via mechanical stress–strain transduction from the primary cell wall tethered to the plasma membrane by a specific arabinogalactan protein (AGP). The resulting stress vector, with direction defined by Hechtian adhesion sites, has a magnitude of a few piconewtons amplified by a hypothetical Hechtian growth oscillator. This paradigm shift involves stress-activated plasma membrane Ca2+ channels and auxin-activated H+-ATPase. The proton pump dissociates periplasmic AGP-glycomodules that bind Ca2+. Thus, as the immediate source of cytosolic Ca2+, an AGP-Ca2+ capacitor directs the vectorial exocytosis of cell wall precursors and auxin efflux (PIN) proteins. In toto, these components comprise the Hechtian oscillator and also the gravisensor. Thus, interdependent auxin and Ca2+ morphogen gradients account for the predominance of AGPs. The size and location of a cell surface AGP-Ca2+ capacitor is essential to differentiation and explains AGP correlation with all stages of morphogenetic patterning from embryogenesis to root and shoot. Finally, the evolutionary origins of the Hechtian oscillator in the unicellular Chlorophycean algae reflect the ubiquitous role of chemiosmotic proton pumps that preceded DNA at the dawn of life.

Author(s):  
Derek T Lamport ◽  
Li Tan ◽  
Michael Held ◽  
Marcia J. Kieliszewski

Morphogenesis remains a riddle, wrapped in a mystery, inside an enigma. It remains a formidable problem viewed from many different perspectives of morphology, genetics, and computational modelling. We propose a biochemical reductionist approach that shows how both internal and external physical forces contribute to plant morphogenesis via mechanical stress-strain transduction from the primary cell wall tethered to the plasma membrane by a specific arabinogalactan protein (AGP). The resulting stress vector with direction defined by Hechtian adhesion sites, has a magnitude of a few picoNewtons amplified by a hypothetical Hechtian growth oscillator. This paradigm shift involves stress activated plasma membrane Ca2+channels and auxin-activated H+-ATPase. The proton pump dissociates periplasmic AGP-glycomodules that bind Ca2+. Thus, as the immediate source of cytosolic Ca2+ an AGP-Ca2+ capacitor directs vectorial exocytosis of cell wall precursors and auxin efflux (PIN) proteins. In toto these components comprise the Hechtian Oscillator and also the gravisensor. Thus interdependent auxin and Ca2+ morphogen gradients account for the predominance of AGPs. The size and location of a cell surface AGP-Ca2+ capacitor is essential to differentiation and explains AGP correlation with all stages of morphogenetic patterning from embryogenesis to root and shoot. Finally, evolutionary origins of the Hechtian Oscillator in the unicellular Chlorophycean algae reflect the ubiquitous role of chemiosmotic proton pumps that preceded DNA at the dawn of life.


2019 ◽  
Vol 65 (1) ◽  
Author(s):  
Satomi Tagawa ◽  
Yusuke Yamagishi ◽  
Ugai Watanabe ◽  
Ryo Funada ◽  
Tetsuo Kondo

Abstract In this study, dynamic changes in structural polysaccharide deposition on the plasma membrane and cortical microtubules (CMTs) behavior were monitored in protoplasts isolated from white birch callus using confocal laser scanning microscopy and atomic force microscopy. We focused on the influence of an environmental stimulus on cell wall regeneration in protoplasts by employing an acidic culture medium containing a high concentration of Ca2+ (the stress condition). Under the non-stress condition, cellulose microfibrils and callose were initially synthesized, and thereafter deposited on the plasma membrane as “primary cell wall material”. Under the stress condition, callose micro-sized fibers were secreted without cell wall regeneration. Behavior of CMTs labeled with mammalian microtubule-associated protein 4 with green fluorescent protein in transgenic protoplasts was monitored by time-lapse video analysis. Under the non-stress condition, CMTs behavior showed a linear arrangement at a fixed position, whereas unfixed manner of CMTs behavior was observed under the stress condition. These findings indicate that excessive Ca2+ affects cellulose synthesis and CMTs dynamics in plant protoplasts. Current study first demonstrated dynamics of cell wall regeneration and CMTs in woody protoplast, which provides novel insight to aid in understanding early stages of primary cell wall formation in plants.


2011 ◽  
Vol 156 (1) ◽  
pp. 11-19 ◽  
Author(s):  
Derek T.A. Lamport ◽  
Marcia J. Kieliszewski ◽  
Yuning Chen ◽  
Maura C. Cannon

2009 ◽  
Vol 150 (2) ◽  
pp. 684-699 ◽  
Author(s):  
Bir Singh ◽  
Utku Avci ◽  
Sarah E. Eichler Inwood ◽  
Mark J. Grimson ◽  
Jeff Landgraf ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document