scholarly journals The Protective Effect of a Long-Acting and Multi-Target HM-3-Fc Fusion Protein in Rheumatoid Arthritis

2018 ◽  
Vol 19 (9) ◽  
pp. 2683 ◽  
Author(s):  
Ruijing Huang ◽  
Jian Li ◽  
Yibo Wang ◽  
Lihua Zhang ◽  
Xiaohui Ma ◽  
...  

Current treatment of rheumatoid arthritis (RA) is limited by relative shortage of treatment targets. HM-3 is a novel anti-RA polypeptide consisting of 18 amino acids with integrin αVβ3 and α5β1 as targets. Previous studies confirmed that HM-3 effectively inhibited the synovial angiogenesis and the inflammatory response. However, due to its short half-life, the anti-RA activity was achieved by frequent administration. To extend the half-life of HM-3, we designed a fusion protein with name HM-3-Fc, by combination of modified Fc segment of immunoglobulin 4 (IgG4) with HM-3 polypeptide. In vitro cell experiments demonstrated that HM-3-Fc inhibited the proliferation of splenic lymphocytes and reduced the release of TNF-α from macrophages. The pharmacodynamics studies on mice paw in Collagen-Induced Arthritis (CIA) model demonstrated that HM-3-Fc administered once in 5 days in the 50 and 25 mg/kg groups, or once in 7 days in the 25 mg/kg group showed a better protective effect within two weeks than the positive control adalimumab and HM-3 group. Preliminary pharmacokinetic studies in cynomolgus confirmed that the in vivo half-life of HM-3-Fc was 15.24 h in comparison with 1.32 min that of HM-3, which demonstrated that an Fc fusion can effectively increase the half-life of HM-3 and make it possible for further reduction of subcutaneous injection frequency. Fc-HM-3 is a long-acting active molecule for RA treatment.

2008 ◽  
Vol 99 (04) ◽  
pp. 659-667 ◽  
Author(s):  
Thomas Weimer ◽  
Wilfried Wormsbächer ◽  
Ulrich Kronthaler ◽  
Wiegand Lang ◽  
Uwe Liebing ◽  
...  

SummaryFor the treatment of haemophilia patients with inhibitors, recombinant factor VIIa (rFVIIa) is available as a therapeutic option to control bleeding episodes with a good balance of safety and efficacy. However, the short in-vivo half-life of approximately 2.5 hours makes multiple injections necessary, which is inconvenient for both physicians and patients. Here we describe the generation of a recombinant FVIIa molecule with an extended half-life based on genetic fusion to human albumin. The recombinant FVII albumin fusion protein (rVII-FP) was expressed in mammalian cells and upon activation displayed a FVII activity close to that of wild type FVIIa. Pharmacokinetic studies in rats demonstrated that the half-life of the activated recombinant FVII albumin fusion protein (rVIIa-FP) was extended six- to sevenfold compared with wild type rFVIIa. The in-vitro and in-vivo efficacy was evaluated and was found to be comparable to a commercially available rFVIIa (NovoSeven®). The results of this study demonstrate that it is feasible to develop a half-life extended FVIIa molecule with haemostatic properties very similar to the wild-type factor.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3142-3142 ◽  
Author(s):  
Stefan Schulte ◽  
Thomas Weimer ◽  
Wilfried Wormsbaecher ◽  
Ulrich Kronthaler ◽  
Albrecht Groener ◽  
...  

Abstract For the treatment of hemophilia patients with inhibitors, recombinant Factor VIIa (rFVIIa) is available as a therapeutic option to control bleeding episodes with a good balance of safety and efficacy. The short in-vivo half-life of approximately 2.5 h requires multiple injections, which is inconvenient for treaters and patients. Here we describe the generation of a half-life extended recombinant FVIIa molecule based on genetic fusion of FVIIa to human albumin. In this fusion protein the design of the linker sequence is important to optimize the effect of the albumin moiety on FVII activity. The recombinant FVII-albumin fusion protein (rVII-FP) was expressed in mammalian cells and upon activation displayed a FVII activity comparable to wild type rFVIIa. Pharmacokinetic studies in rats and rabbits demonstrated that the half-life of the activated recombinant FVII albumin fusion protein (rVIIa-FP) was 6 to 9 fold extended compared to wild type rFVIIa. The in-vitro and in-vivo efficacy was evaluated and found comparable to commercially available rFVIIa (NovoSeven®). The results of this study demonstrate that it is feasible to improve the attributes of a rVIIa molecule by extending its half life, while retaining a molecule with very similar hemostatic properties to the wild type factor.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1165-1165
Author(s):  
Jamie M O'Sullivan ◽  
Judicael Fazavana ◽  
Alain Chan ◽  
Niamh Cooke ◽  
Virginie Terraube ◽  
...  

Abstract Introduction Deficiencies of both von Willebrand Factor (VWF) and FVIII are associated with significant bleeding phenotypes. Consequently, patients with VWD or hemophilia A commonly require replacement therapy with coagulation factor concentrates. However, as infused VWF and FVIII have relatively short plasma half-lives, patient therapy generally necessitates frequent re-dosing. Development of a long-acting rVWF therapy thus represents an important unmet clinical need. We and others have previously demonstrated that the A1A2A3 domains of VWF play a critical role in regulating macrophage-mediated clearance of VWF in vivo. Importantly, crystal structures of the A-domains have also well characterized. In this study, we sought to utilize this data to investigate the hypothesis that site-specific PEGylation within the A1A2A3 domains could be used as a novel strategy to inhibit macrophage-mediated clearance, and thereby inform development of a rVWF molecule with extended plasma half-life. Methodology Site-directed mutagenesis was used to engineer novel surface cysteine residues at selected sites within A1A2A3-VWF. Following purification and characterization, individual A1A2A3 cysteine variants were PEGylated using 40kDa PEG maleimide. Clearance of unPEGylated and PEGylated A1A2A3 variants were assessed in VWF-/- mice. VWF-macrophage interactions were quantified in vitro using differentiated THP-1 macrophages. VWF binding to LRP1 clearance receptor was assessed using both immunosorbant assays and Surface Plasmon Resonance. Results Novel single cysteine residues were introduced at stringently selected sites within A1A2A3-VWF. These sites spanned all 3 A-domains and included; S1286C, Q1353C, M1545C, L1591C, V1636C, Q1652C, V1803C and S1807C. Interestingly, the introduction of these novel cysteine residues in both the A1 and A3 domains of VWF did not alter the rate of VWF clearance compared to WT A1A2A3-VWF. Conversely however, the A2 domain was less tolerant for the insertion of cysteines, with L1591C and V1636C variants demonstrating a significantly reduced VWF plasma half-life of approx. 1.5 fold versus WT-A1A2A3 (p<0.05). Subsequently, the engineered cysteine residues were modified by covalent attachment of a 40kDa branched PEG molecule. All variants achieved greater than 80% PEG conjugation efficiency, except V1636C which was eliminated from further study. Remarkably, PEG conjugation displayed site-specific effects on the in vivo half-life of A1A2A3-VWF. For example, PEGylation at S1286C within the A1 domain resulted in a marked increased in VWF half-life compared to WT-A1A2A3 VWF (92.4±6 vs 18.3±0.9 mins, respectively, p<0.001). Conversely, PEGylation at the adjacent site in the A1 domain, Q1353C, or downstream at M1545C within A2 had no significant effect on VWF half-life (23.3±1 and 20.8±3 mins, respectively). Interestingly, despite the fact that no previous roles have been described for the A3 domain of VWF in regulating its clearance, we observed a significant extension in VWF half-life for PEGylated variants within the A3 domain, V1803C and S1807C, (93.3±9 mins and 58.0±5 mins, respectively, p<0.05). Macrophage LDL receptor related protein 1 (LRP1) has been implicated as key cellular mediator of VWF clearance in vivo. Interestingly, in keeping with the reduced clearance observed for PEGylated VWF variants S1286C, V1803C and S1807C, binding of these variants to clearance receptor LRP1 cluster II and IV was ablated. Conversely, PEGylated variants which failed to extend VWF half-life (Q1353C and M1545C) displayed LRP1 binding that was comparable to WT-A1A2A3 VWF. Interestingly, PEGylation at specific sites in A2 (L1591C and Q1652C) which served to increased VWF half-life displayed normal binding to LRP1 cluster IV. However, binding of these variants to LRP1 cluster II was reduced by 90% compared to WT-A1A2A3. Conclusion Collectively, our novel data demonstrate that cysteine-directed PEGylation at specific sites within the A1 (S1286C), A2 (L1591C, Q1652C) and A3 (V1803C and S1807C) domains of A1A2A3-VWF inhibits binding to macrophage clearance receptor LRP1 in vitro. Consequently, these PEGylated A1A2A3-VWF variants demonstrate an extended circulatory half-life in vivo compared to wild type A1A2A3-VWF. Taken together, these results support the use of site-specific PEGylation as a potential approach to develop long-acting full length rVWF molecules. Disclosures Cooke: Pfizer: Employment. Terraube:Pfizer: Employment. Cohen:Pfizer: Employment. Pittman:Pfizer: Employment. Cunningham:Pfizer: Employment. Lambert:Pfizer: Employment. O'Donnell:Pfizer: Consultancy, Research Funding; Daiichi Sankyo: Consultancy; CSL Behring: Consultancy; Octapharma: Speakers Bureau; Leo Pharma: Speakers Bureau; Novo Nordisk: Research Funding, Speakers Bureau; Bayer: Research Funding, Speakers Bureau; Baxter: Research Funding, Speakers Bureau; Shire: Research Funding, Speakers Bureau.


Blood ◽  
2010 ◽  
Vol 116 (2) ◽  
pp. 270-279 ◽  
Author(s):  
Baisong Mei ◽  
Clark Pan ◽  
Haiyan Jiang ◽  
Hendri Tjandra ◽  
Jonathan Strauss ◽  
...  

Abstract A long-acting factor VIII (FVIII) as a replacement therapy for hemophilia A would significantly improve treatment options for patients with hemophilia A. To develop a FVIII with an extended circulating half-life, but without a reduction in activity, we have engineered 23 FVIII variants with introduced surface-exposed cysteines to which a polyethylene glycol (PEG) polymer was specifically conjugated. Screening of variant expression level, PEGylation yield, and functional assay identified several conjugates retaining full in vitro coagulation activity and von Willebrand factor (VWF) binding.PEGylated FVIII variants exhibited improved pharmacokinetics in hemophilic mice and rabbits. In addition, pharmacokinetic studies in VWF knockout mice indicated that larger molecular weight PEG may substitute for VWF in protecting PEGylated FVIII from clearance in vivo. In bleeding models of hemophilic mice, PEGylated FVIII not only exhibited prolonged efficacy that is consistent with the improved pharmacokinetics but also showed efficacy in stopping acute bleeds comparable with that of unmodified rFVIII. In summary site-specifically PEGylated FVIII has the potential to be a long-acting prophylactic treatment while being fully efficacious for on-demand treatment for patients with hemophilia A.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1162-1162
Author(s):  
Jee-Yeong Jeong ◽  
Changmin Chen ◽  
Kerry L. Davis ◽  
Andreas Breidbach ◽  
Don H. Catlin ◽  
...  

Abstract Recombinant human erythropoietin (EPO, epoetin) is used widely for treatment of chronic anemia due to renal failure, cancer, and other causes. However, considerably high and frequent doses of EPO are required to maintain therapeutic effectiveness, since it has a relatively short in vivo half-life. Thus, alternatives with higher efficacy and/or longer half-life are being developed. We have shown previously that EPO-dimers, either produced by chemical cross-linking of monomeric EPO or expressed as a recombinant fusion protein from COS cells, exhibit enhanced biological properties in vitro and in vivo (Sytkowski, et.al. Proc. Natl. Acad. Sci. USA 95, 1184; Sytkowski, et.al. J. Biol. Chem. 274, 24773). We now report increased activities of EPO-dimer fusion protein and EPO-trimer fusion protein comprised of identical head-to-tail repeats and a 15 or 20-amino acid linker (for dimer), or 17-amino acid linkers (for trimer) produced from stably transfected CHO cells. EPO-fusion proteins were expressed under a CMV promoter with a signal peptide present on the first monomer coding sequence. The EPO-dimer fusion protein was connected with either three or four repeats of Gly-Gly-Gly-Gly-Ser as a 15 or 20-amino acid linker sequence, respectively. The expression levels of EPO-dimer fusion protein from cloned CHO cells to supernatant of protein-free medium ranged from 4 to 40 mg/L determined by EPO-ELISA, and from 2.0×105 to 4.5×106 IU/L determined by in vitro bioassay. We selected clones producing EPO-dimer fusion protein with the greatest extent of glycosylation, as indicated by SDS-PAGE and isoelectric focusing. Subcutaneous injection of mice with three doses of EPO-dimer fusion protein resulted in percent increases in mean hematocrit of 32.6% (300 IU/kg) or 18.2% (100 IU/kg), while equivalent unit doses of EPO-monomer increased mean hematocrit by 12.5% (300 IU/kg) or 6.4% (100 IU/kg). Moreover, a single dose of EPO-dimer fusion protein (100 IU/kg) increased their mean hematocrit by 4.3% within 7 days, while an equivalent unit dose of EPO-monomer had no effect. Importantly, three doses of EPO-trimer fusion protein increased their mean hematocrit by 8.83% per IU injected, which was much greater than that observed with EPO-monomer (0.69%) or EPO-dimer fusion protein (1.81%). The results show that EPO-fusion proteins exhibit biological activities superior to those of EPO-monomer, suggesting important therapeutic advantages.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1590-1590
Author(s):  
Edmund A Rossi ◽  
Chien-Hsing Chang ◽  
Thomas M Cardillo ◽  
Diane L Nordstrom ◽  
David M. Goldenberg

Abstract BACKGROUND: Interferon-α2b (IFN-α2b) is active alone and in combination with other agents in the therapy of a variety of cancers, including hairy cell leukemia, chronic myelocytic leukemia, follicular lymphoma, and malignant melanoma. As for most cytokines, the pharmacokinetics are a major factor affecting schedule and efficacy. The protein is rapidly degraded, diffuses widely throughout the body, and has a rapid rate of renal clearance. Commercially available IFNs that are pegylated, such as PEG-INTRON and PEGASYS, have increased serum half-life and reduced renal clearance, which augment their biological activity. For therapy of lymphoma and other cancers, fusing IFN-α2 to tumor-targeting antibodies could increase serum half-life and target the IFN-α2 to the tumor, conceivably allowing less frequent and lower dosing with improved therapeutic efficacy and reduced side effects. METHODS: The modular DNL method exploits a pair of distinct protein domains involved in the natural binding between protein kinase A (PKA) and A-kinase anchoring proteins (AKAP), whereby the dimerization-and-docking domain (DDD) of PKA and the anchoring domain (AD) of an interactive AKAP are each fused to a biological entity, resulting in respective DDD- and AD-modules that are readily combined to quantitatively generate stably-tethered structures of defined composition with retained bioactivity. We have selectively combined recombinant DDD-modules comprising IFN-α2b with recombinant AD-modules derived from the anti-CD20 humanized mAb, veltuzumab, and other humanized mAbs to generate complexes comprising four copies of IFN-α2b site-specifically linked to the bivalent IgG. RESULTS: The IgG-AD2 and IFN-α2b-DDD2 modules were expressed in separate myeloma cell cultures and purified from culture broths by Protein A and IMAC, respectively. Combining an IgG-AD2 module with slightly more than 2 molar equivalents of the cytokine-DDD2 module under mild redox conditions resulted in the formation of a covalent complex comprising one IgG and 4 IFN-α2b via the docking of each of the two AD2 domains on IgG with a dimer of IFN-α2b-DDD2, and subsequent formation of disulfide bonds (locking) between DDD2 and AD2. The 255-kDa conjugates, which were purified by Protein A, were readily detected by size-exclusion HPLC and non-reducing SDS-PAGE, and retained the biological functions of IFN-α2b in vitro. The IgG-IFN-α2b constructs exhibited potent anti-viral activity in vitro, with specific activities approaching that of recombinant human IFN-α2b. Additionally, the constructs all showed highly potent in vitro cytotoxicity against Burkitt lymphoma cell lines. Notably, the CD20-targeted IFN-α2b construct (20-2b) was 30-fold more potent than a control, non-targeting IgG-IFN-α2b. The enhanced cytotoxicity of 20-2b was not reproduced when non-targeting IgG-IFN-α2b was used in combination with veltuzumab, suggesting that IFN-α2b must be physically linked to achieve maximal potency. IgG-IFN-α2b fusion proteins, including 20-2b, induced significantly more potent ADCC compared to their parental MAbs. The targeting properties of 20-2b were comparable to veltuzumab, and its serum half-life was significantly longer than PEG-INTRON and PEGASYS. In the human Daudi xenograft model, 20-2b showed superior anti-tumor efficacy compared to both veltuzumab and other IgG-IFN-α2 agents. The median survival time (MST) for mice treated with single-dose 170 ng 20-2b was 101.5 days, whereas those treated with an equivalent dose of veltuzumab and untreated mice survived 39 and 28 days, respectively (P&lt;0.0005). Lower 20-2b doses of 80, 17 and 8 ng resulted in MST of 97.5, 56.5 and 48 days, respectively, with the lowest dose still significantly better than the highest dose of veltuzumab (P=0.0434). Using a single 170-ng dose, a CD22-targeting IFN-α2b (22-2b) also increased MST significantly to 47 days (P =0.0119), while a non-targeting IgG-IFN-α2b (734-2b) did not. CONCLUSIONS: The DNL method provided an IFN-α2-targeting mAb fusion protein that showed improved anti-tumor efficacy over the mAb by itself, based on improved pharmacokinetics, ADCC, and tumor targeting, as well as reduced systemic toxicity. Thus, DNL provides a modular approach to efficiently tether cytokines to targeting antibodies, resulting in higher in vivo potency than the original cytokines or mAbs.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. e13551-e13551
Author(s):  
Laurie Pukac ◽  
Steven Barash ◽  
Noa Avisar ◽  
Hermann Allgaier ◽  
Jason Bock ◽  
...  

e13551 Background: Balugrastim is a once-per-cycle fixed-dose genetic fusion protein composed of human serum albumin (HSA) and granulocyte colony-stimulating factor (G-CSF) in development for prevention of severe neutropenia in cancer patients receiving chemotherapy. Albumin fusion is a clinically validated technology that extends product half-life, allowing for infrequent dosing, better tolerability, lower cost, and improves drug design, potentially lowering immunogenicity risk. Here, we describe the technology used to produce balugrastim and summarize preclinical findings compared with pegfilgrastim (Neulasta). Methods: Design and production of balugrastim was described previously (Halpern et al. Pharmaceut Res 2002;19:1720−1729). Biologic activity of balugrastim was assessed in an NFS-60 cell line proliferation assay vs filgrastim and pegfilgrastim. PK and PD properties were studied in healthy and neutropenic animal models. Results: Albumin fusion produces a long-acting G-CSF with comparable pharmacologic properties to pegfilgrastim. In vitro, balugrastim had binding affinity and cell proliferation activity comparable to pegfilgrastim, and both were lower than non-PEGylated filgrastim on a molar basis. Overall increases in leukocytes, neutrophilic granulocytes, and monocytes were dose dependent and consistent with the effects expected for a long-acting G-CSF with some variation based on the specific animal model used. A single balugrastim dose in BDF1 mice elicited a dose-dependent increase in peripheral granulocytes and mobilized hematopoietic progenitor cells. In cynomolgus monkeys, balugrastim caused an increase in peripheral neutrophils similar to pegfilgrastim, with higher responses after 2nd, 3rd, and 4th doses. In mice, balugrastim had shorter terminal half-life and mean residence time, and faster clearance than pegfilgrastim. In monkeys, terminal half-life of balugrastim was slightly longer than pegfilgrastim. Conclusions: An albumin fusion technology platform was used to produce balugrastim – a novel, biologically active albumin G-CSF fusion protein with greater structural homogeneity and comparable pharmacologic properties to conventionally PEGylated G-CSFs.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 3036-3036
Author(s):  
Moutih Rafei ◽  
Minh To ◽  
Fahar Merchant ◽  
Nina Merchant

3036 Background: Use of IL-2 (Proleukin) remains limited due to its short half-life, toxicity, and its ability to preferentially activate Tregs resulting in unwanted immune suppression. Approaches to reduce binding to CD25 (IL2α), such as pegylation techniques, also results in reduced affinity to CD122 (IL2β). To bypass these limitations, we engineered MDNA11, an IL-2 Superkine containing core mutations to diminish binding to CD25 while increasing affinity to CD122. To increase half-life, MDNA11 was fused to an albumin scaffold, which is known to allow accumulation at the tumor site. Methods: MDNA11 was evaluated using in vitro and in vivo studies that included: IL-2 signaling in human PBMCs, Biacore binding analyses, PK studies in mice, and efficacy studies in syngeneic tumor models with or without immune checkpoint inhibitors (ICIs). In addition, dose-range finding studies in cynomolgus monkeys (NHP) were performed to characterize the safety and PK/PD profiles of MDNA11. Results: MDNA11 displayed enhanced STAT5 signaling in human NK and naïve CD8 T-cells with diminished Treg activity. In mice, the terminal half-life of MDNA11 was 24-fold longer than IL-2. As a result, MDNA11 triggered effective tumor growth control, as monotherapy or in combination with ICI, in multiple tumor models in spite of q1wk dosing for two weeks. MDNA11 administration to mice with pre-established CT26 colon cancer resulted in tumor-free animals and induced strong memory response and protection against subsequent re-challenges. MDNA11 also inhibited the growth of B16F10 melanomas, which translated into a durable increase in tumor infiltrating CD8 T-cells. When tested in NHP, MDNA11 led to increased circulating CD8 T-cells lasting for almost 14 days with limited effects on Tregs and eosinophils (the latter being a source of IL-5 causing vascular leak syndrome). High doses resulted in mild side effects that were transient and reversible even following repeated dosing. Conclusions: The long-acting MDNA11 Superkine has superior potency over IL-2 at activating naïve CD8 T-cells and NK cells, while exhibiting diminished Treg activation. This molecule potently inhibited tumor growth and induced durable regression and long-term memory response. Studies in NHP showed prolonged proliferation of immune effector cells lasting almost two weeks post-MDNA11 administration. The sum of these data underscores the potency of MDNA11 to trigger the host’s immune response to control or eradicate established tumors.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Yue Wang ◽  
Ries J Langley ◽  
Kyle Tamshen ◽  
Heather D Maynard ◽  
Stephen M F Jamieson ◽  
...  

Abstract Growth hormone (GH) is a peptide hormone that mediates actions through binding to a cell surface GH receptor (GHR), activating key signalling pathways including the JAK/STAT pathway. Excess GH secretion leads to acromegaly and tumoral expression has been implicated in cancer progression, suggesting that GH is also a potential target for anticancer therapy. Pegvisomant is the only GHR antagonist approved for clinical use. This antagonist is a PEGylated form of a mutated GH (B2036) that binds and blocks the receptor. Conjugation to polyethylene glycol (PEG) at multiple amine residues reduces in vitro bioactivity but extends the serum half-life resulting in improved in vivo bioactivity. We investigated whether we could generate a long-acting PEGylated GHR antagonist through site-specific conjugation of PEG. A codon optimised GHR antagonist, with an introduced free cysteine residue at amino acid site 144 (S144C), was generated by gene synthesis and recombinantly engineered by gene fusion with thioredoxin. Recombinant protein was expressed in E. coli and purified using a series of chromatographic methods. Antagonists were PEGylated using cysteine-specific conjugation chemistry. In vitro activity was determined using a Ba/F3-GHR viability assay, and in vivo pharmacokinetic and bioactivity was determined in mice. Fusion to thioredoxin was found to improve soluble protein expression at 30℃, resulting in dramatically increased yield. After a series of purification steps, including Ni-NTA, 3C protease cleavage and ion-exchange chromatography, a single band with a molecular mass of 22 kDa was observed by SDS-PAGE analysis. The recombinant antagonist was conjugated to 20 kDa or 30 kDa-PEG at amino acid site S144C. After purification, a single band with an effective molecular size of approximately 60 kDa (PEG-20kDa conjugate) or 70 kDa (PEG-30kDa conjugate) was observed by SDS-PAGE analysis. The unconjugated antagonist inhibited the proliferation of Ba/F3-GHR cells in a dose-dependent manner with a half maximal inhibitory concentration (IC50) of 10.1 ± 2.5 nM. Following PEGylation and purification, the PEG-20kDa and PEG-30kDa conjugates retained high in vitro bioactivity with an IC50 of 66.2 ± 3.8 nM and 106.1 ± 7.1 nM, respectively. Pharmacokinetic analysis demonstrated that PEGylation increased the serum half-life to approximately 15 hours in mice. Subcutaneous administration of the PEG-30kDa conjugate (10 mg/kg/day) reduced serum IGF-I levels in mice. In conclusion, we have generated a novel long-acting human GHR antagonist conjugate by introducing a free cysteine at a non-essential site of the antagonist and targeted attachment of PEG.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 364 ◽  
Author(s):  
Mijeong Bak ◽  
Junyong Park ◽  
Kiyoon Min ◽  
Jinhwan Cho ◽  
Jihyoun Seong ◽  
...  

The number of therapeutic peptides for human treatment is growing rapidly. However, their development faces two major issues: the poor yield of large peptides from conventional solid-phase synthesis, and the intrinsically short serum half-life of peptides. To address these issues, we investigated a platform for the production of a recombinant therapeutic peptide with an extended serum half-life involving the site-specific conjugation of human serum albumin (HSA). HSA has an exceptionally long serum half-life and can be used to extend the serum half-lives of therapeutic proteins and peptides. We used glucagon-like-peptide 1 (GLP-1) as a model peptide in the present study. A “clickable” non-natural amino acid—p-azido-l-phenylalanine (AzF)—was incorporated into three specific sites (V16, Y19, and F28) of a GLP-1 variant, followed by conjugation with HSA through strain-promoted azide–alkyne cycloaddition. All three HSA-conjugated GLP-1 variants (GLP1_16HSA, GLP1_19HSA, and GLP1_28HSA) exhibited comparable serum half-lives in vivo. However, the three GLP1_HSA variants had different in vitro biological activities and in vivo glucose-lowering effects, demonstrating the importance of site-specific HSA conjugation. The platform described herein could be used to develop other therapeutic peptides with extended serum half-lives.


Sign in / Sign up

Export Citation Format

Share Document