scholarly journals Concatenation of Human Connexin26 (hCx26) and Human Connexin46 (hCx46) for the Analysis of Heteromeric Gap Junction Hemichannels and Heterotypic Gap Junction Channels

2018 ◽  
Vol 19 (9) ◽  
pp. 2742 ◽  
Author(s):  
Patrik Schadzek ◽  
Doris Hermes ◽  
Yannick Stahl ◽  
Nadine Dilger ◽  
Anaclet Ngezahayo

Gap junction channels and hemichannels formed by concatenated connexins were analyzed. Monomeric (hCx26, hCx46), homodimeric (hCx46-hCx46, hCx26-hCx26), and heterodimeric (hCx26-hCx46, hCx46-hCx26) constructs, coupled to GFP, were expressed in HeLa cells. Confocal microscopy showed that the tandems formed gap junction plaques with a reduced plaque area compared to monomeric hCx26 or hCx46. Dye transfer experiments showed that concatenation allows metabolic transfer. Expressed in Xenopus oocytes, the inside-out patch-clamp configuration showed single channels with a conductance of about 46 pS and 39 pS for hemichannels composed of hCx46 and hCx26 monomers, respectively, when chloride was replaced by gluconate on both membrane sides. The conductance was reduced for hCx46-hCx46 and hCx26-hCx26 homodimers, probably due to the concatenation. Heteromerized hemichannels, depending on the connexin-order, were characterized by substates at 26 pS and 16 pS for hCx46-hCx26 and 31 pS and 20 pS for hCx26-hCx46. Because of the linker between the connexins, the properties of the formed hemichannels and gap junction channels (e.g., single channel conductance) may not represent the properties of hetero-oligomerized channels. However, should the removal of the linker be successful, this method could be used to analyze the electrical and metabolic selectivity of such channels and the physiological consequences for a tissue.

2001 ◽  
Vol 280 (5) ◽  
pp. C1130-C1139 ◽  
Author(s):  
Jichang Li ◽  
Ana M. Correa

Volatile anesthetics modulate the function of various K+ channels. We previously reported that isoflurane induces an increase in macroscopic currents and a slowing down of current deactivation of Shaker H4 IR K+ channels. To understand the single-channel basis of these effects, we performed nonstationary noise analysis of macroscopic currents and analysis of single channels in patches from Xenopus oocytes expressing Shaker H4 IR. Isoflurane (1.2% and 2.5%) induced concentration-dependent, partially reversible increases in macroscopic currents and in the time course of tail currents. Noise analysis of currents (70 mV) revealed an increase in unitary current (∼17%) and maximum open probability (∼20%). Single-channel conductance was larger (∼20%), and opening events were more stable, in isoflurane. Tail-current slow time constants increased by 41% and 136% in 1.2% and 2.5% isoflurane, respectively. Our results show that, in a manner consistent with stabilization of the open state, isoflurane increased the macroscopic conductance of Shaker H4 IR K+ channels by increasing the single-channel conductance and the open probability.


2002 ◽  
Vol 119 (2) ◽  
pp. 171-186 ◽  
Author(s):  
Feliksas F. Bukauskas ◽  
Angele Bukauskiene ◽  
Vytas K. Verselis

We used cell lines expressing wild-type connexin43 and connexin43 fused with the enhanced green fluorescent protein (Cx43-EGFP) to examine conductance and perm-selectivity of the residual state of Cx43 homotypic and Cx43/Cx43-EGFP heterotypic gap junction channels. Each hemichannel in Cx43 cell–cell channel possesses two gates: a fast gate that closes channels to the residual state and a slow gate that fully closes channels; the transjunctional voltage (Vj) closes the fast gate in the hemichannel that is on the relatively negative side. Here, we demonstrate macroscopically and at the single-channel level that the I-V relationship of the residual state rectifies, exhibiting higher conductance at higher Vjs that are negative on the side of gated hemichannel. The degree of rectification increases when Cl− is replaced by Asp− and decreases when K+ is replaced by TEA+. These data are consistent with an increased anionic selectivity of the residual state. The Vj-gated channel is not permeable to monovalent positively and negatively charged dyes, which are readily permeable through the fully open channel. These data indicate that a narrowing of the channel pore accompanies gating to the residual state. We suggest that the fast gate operates through a conformational change that introduces positive charge at the cytoplasmic vestibule of the gated hemichannel, thereby producing current rectification, increased anionic selectivity, and a narrowing of channel pore that is largely responsible for reducing channel conductance and restricting dye transfer. Consequently, the fast Vj-sensitive gating mechanism can serve as a selectivity filter, which allows electrical coupling but limits metabolic communication.


1987 ◽  
Vol 253 (3) ◽  
pp. F476-F487 ◽  
Author(s):  
H. Sackin ◽  
L. G. Palmer

Potassium (K+) channels in the basolateral membrane of unperfused Necturus proximal tubules were studied in both cell-attached and excised patches, after removal of the tubule basement membrane by manual dissection without collagenase. Two different K+ channels were identified on the basis of their kinetics: a short open-time K+ channel, with a mean open time less than 1 ms, and a long open-time K+ channel with a mean open time greater than 20 ms. The short open-time channel occurred more frequently than the longer channel, especially in excised patches. For inside-out excised patches with Cl- replaced by gluconate, the current-voltage relation of the short open-time K+ channel was linear over +/- 60 mV, with a K+-Na+ selectivity of 12 +/- 2 (n = 12), as calculated from the reversal potential with oppositely directed Na+ and K+ gradients. With K-Ringer in the patch pipette and Na-Ringer in the bath, the conductance of the short open-time channel was 47 +/- 2 pS (n = 15) for cell-attached patches, 26 +/- 2 pS (n = 15) for patches excised (inside out) into Na-Ringer, and 36 +/- 6 pS (n = 3) for excised patches with K-Ringer on both sides. These different conductances can be partially explained by a dependence of single-channel conductance on the K+ concentration on the interior side of the membrane. In experiments with a constant K+ gradient across excised patches, large changes in Na+ at the interior side of the membrane produced no change in single-channel conductance, arguing against a direct block of the K+ channel by Na+. Finally, the activity of the short open-time channel was voltage gated, where the mean number of open channels decreased as a linear function of basolateral membrane depolarization for potentials between -60 and 0 mV. Depolarization from -60 to -40 mV decreased the mean number of open K+ channels by 28 +/- 8% (n = 6).


1992 ◽  
Vol 262 (1) ◽  
pp. C84-C90 ◽  
Author(s):  
M. Mukai ◽  
I. Kyogoku ◽  
M. Kuno

Antigenic stimulation of rat basophilic leukemia (RBL-2H3) cells, a tumor mast cell line, is associated with an increase in intracellular free Ca2+ concentrations ([Ca2+]i) and membrane polarization. We recorded whole cell and single-channel currents through the inwardly rectifying K+ channel, a major resting conductance of cells, using the patch-clamp technique, and we examined interactions between channel activity and [Ca2+]i. With 10 microM Ca2+ in the pipette, the amplitude of whole cell currents gradually declined within 5 min to 48 +/- 13% of that immediately after rupture of the patch membrane, in the presence of 1 mM ATP which minimized intrinsic rundown. In inside-out patches, activity of the channel was reduced by increasing the concentration of Ca2+ in the internal medium, both in the presence and absence of 1 mM ATP, with no apparent change in single-channel conductance. Time-averaged mean current activity in inside-out patches in the presence of 5 microM Ca2+ was less than 50% of that with Ca2+ of 100 nM or less. These results suggest that a rise in [Ca2+]i leads to a closure of the inwardly rectifying K+ channel. In some inside-out patches, inward currents characterized by burst composed of rapid transitions between open and closed states were observed (flickering currents). Single-channel properties of the flickering currents are similar to the inwardly rectifying K+ channel except for kinetics (single-channel conductance of 24.5 +/- 7.9 pS, inward rectification, and permeability to K+).(ABSTRACT TRUNCATED AT 250 WORDS)


PLoS ONE ◽  
2015 ◽  
Vol 10 (12) ◽  
pp. e0143876 ◽  
Author(s):  
Xiaoling Tong ◽  
Hiroshi Aoyama ◽  
Swathy Sudhakar ◽  
Honghong Chen ◽  
Brian H. Shilton ◽  
...  

1987 ◽  
Vol 65 (4) ◽  
pp. 568-573 ◽  
Author(s):  
C. L. Schauf

Time- and voltage-dependent behavior of the Na+ conductance in dialyzed intact Myxicola axons was compared with cut-open axons subjected to loose-patch clamp of the interior and to axons where Gigaseals were formed after brief enzyme digestion. Voltage and time dependence of activation, inactivation, and reactivation were identical in whole-axons and loose-patch preparations. Single channels observed in patch-clamp axons had a conductance of 18.3 ± 2.3 pS and a mean open time of 0.84 ± 0.12 ms. The time-dependence of Na+ currents found by averaging patch-clamp records was similar to intact axons, as was the voltage dependence of activation. Steady-state inactivation in patch-clamped axons was shifted by an average of 15 mV from that seen in loose-patch or intact axons. Substitution of D2O for H2O decreased single channel conductance by 24 ± 6% in patch-clamped axons compared with 28 ± 4% in intact axons, slowed inactivation by 58 ± 8% compared with 49 ± 6%, and increased mean open time by 52 ± 7%. The results confirm observations on macroscopic channel behavior in Myxicola and resemble that seen in other excitable tissues.


2014 ◽  
Vol 70 (a1) ◽  
pp. C851-C851
Author(s):  
Atsunori Oshima ◽  
Tomohiro Matsuzawa ◽  
Kazuyoshi Murata ◽  
Kouki Nishikawa ◽  
Yoshinori Fujiyoshi

Innexin is a molecular component of invertebrate gap junctions, which have an important role in neural and muscular electrical activity in invertebrates. Although the structure of vertebrate connexin26 was revealed by X-ray crystallography [1], the structure of innexin channels remains poorly understood. To study the structure of innexin gap junction channels, we expressed and purified Caenorhabditis elegans innexin-6 (INX-6) gap junction channels, and characterized their molecular dimensions and channel permeability using electron microscopy (EM) and a fluorescent dye transfer assay, respectively [2]. Negative-staining and thin-section EM of isolated INX-6 gap junction plaques revealed a loosely packed hexagonal lattice. We performed single particle analysis of purified INX-6 channels with negative-staining and cryo EM. Based on the negative-stain EM images, the class average of the junction form had a longitudinal height of 220 Å, a channel diameter of 110 Å in the absence of detergent micelles, and an extracellular gap space of 60 Å, whereas the class average of the hemichannels had diameters of up to 140 Å in the presence of detergent micelles. Cryo EM images revealed rotational peaks that could be related to the INX-6 subunits. Structural analysis of the reconstituted INX-6 channels with single particle analysis and electron tomography suggested that the oligomeric number of the INX-6 channel was distinct from that of the dodecameric connexin channel. Dye transfer experiments indicated that the INX-6-GFP-His channels were permeable to 3-kDa and 10-kDa dextran-conjugated tracers. These findings indicate that INX-6 channels have a characteristic oligomer component that differs from that in connexin gap junction channels.


1993 ◽  
Vol 4 (1) ◽  
pp. 7-20 ◽  
Author(s):  
R Bruzzone ◽  
J A Haefliger ◽  
R L Gimlich ◽  
D L Paul

The cellular distribution of connexin40 (Cx40), a newly cloned gap junction structural protein, was examined by immunofluorescence microscopy using two different specific anti-peptide antibodies. Cx40 was detected in the endothelium of muscular as well as elastic arteries in a punctate pattern consistent with the known distribution of gap junctions. However, it was not detected in other cells of the vascular wall. By contrast, Cx43, another connexin present in the cardiovascular system, was not detected in endothelial cells of muscular arteries but was abundant in the myocardium and aortic smooth muscle. We have tested the ability of these connexins to interact functionally. Cx40 was functionally expressed in pairs of Xenopus oocytes and induced the formation of intercellular channels with unique voltage dependence. Unexpectedly, communication did not occur when oocytes expressing Cx40 were paired with those expressing Cx43, although each could interact with a different connexin, Cx37, to form gap junction channels in paired oocytes. These findings indicate that establishment of intercellular communication can be spatially regulated by the selective expression of different connexins and suggest a mechanism that may operate to control the extent of communication between cells.


1995 ◽  
Vol 6 (12) ◽  
pp. 1707-1719 ◽  
Author(s):  
B R Kwak ◽  
M M Hermans ◽  
H R De Jonge ◽  
S M Lohmann ◽  
H J Jongsma ◽  
...  

Studies on physiological modulation of intercellular communication mediated by protein kinases are often complicated by the fact that cells express multiple gap junction proteins (connexins; Cx). Changes in cell coupling can be masked by simultaneous opposite regulation of the gap junction channel types expressed. We have examined the effects of activators and inhibitors of protein kinase A (PKA), PKC, and PKG on permeability and single channel conductance of gap junction channels composed of Cx45, Cx43, or Cx26 subunits. To allow direct comparison between these Cx, SKHep1 cells, which endogenously express Cx45, were stably transfected with cDNAs coding for Cx43 or Cx26. Under control conditions, the distinct types of gap junction channels could be distinguished on the basis of their permeability and single channel properties. Under various phosphorylating conditions, these channels behaved differently. Whereas agonists/antagonist of PKA did not affect permeability and conductance of all gap junction channels, variable changes were observed under PKC stimulation. Cx45 channels exhibited an additional conductance state, the detection of the smaller conductance states of Cx43 channels was favored, and Cx26 channels were less often observed. In contrast to the other kinases, agonists/antagonist of PKG affected permeability and conductance of Cx43 gap junction channels only. Taken together, these results show that distinct types of gap junction channels are differentially regulated by similar phosphorylating conditions. This differential regulation may be of physiological importance during modulation of cell-to-cell communication of more complex cell systems.


Sign in / Sign up

Export Citation Format

Share Document