scholarly journals Role of Forkhead Box O Transcription Factors in Oxidative Stress-Induced Chondrocyte Dysfunction: Possible Therapeutic Target for Osteoarthritis?

2018 ◽  
Vol 19 (12) ◽  
pp. 3794 ◽  
Author(s):  
Rikang Wang ◽  
Gang Chen ◽  
Shuai Zhang ◽  
Rahul Previn ◽  
Di Chen ◽  
...  

Chondrocyte dysfunction occurs during the development of osteoarthritis (OA), typically resulting from a deleterious increase in oxidative stress. Accordingly, strategies for arresting oxidative stress-induced chondrocyte dysfunction may lead to new potential therapeutic targets for OA treatment. Forkhead box O (FoxO) transcription factors have recently been shown to play a protective role in chondrocyte dysfunction through the regulation of inflammation, autophagy, aging, and oxidative stress. They also regulate growth, maturation, and matrix synthesis in chondrocytes. In this review, we discuss the recent progress made in the field of oxidative stress-induced chondrocyte dysfunction. We also discuss the protective role of FoxO transcription factors as potential molecular targets for the treatment of OA. Understanding the function of FoxO transcription factors in the OA pathology may provide new insights that will facilitate the development of next-generation therapies to prevent OA development and to slow OA progression.

2006 ◽  
Vol 34 (5) ◽  
pp. 722-726 ◽  
Author(s):  
E.W.-F. Lam ◽  
R.E. Francis ◽  
M. Petkovic

FOXO (forkhead box O) transcription factors are crucial regulators of cell fate. This function of FOXO proteins relies on their ability to control diverse and at times, opposing cellular functions, such as proliferation, differentiation, DNA repair, defence against oxidative stress damage and apoptosis, in response to hormones, growth factors and other environmental cues. This review discusses our current understanding of the regulation and role of FOXO transcription factors in determining cell fate and highlights their relevance to tumorigenesis and drug resistance.


2008 ◽  
Vol 389 (3) ◽  
pp. 279-283 ◽  
Author(s):  
Daniel G. Sedding

Abstract Forkhead box O (FoxO) transcription factors are important downstream targets of the PI3K/Akt signaling pathway and crucial regulators of cell fate. This function of FoxOs relies on their ability to control diverse cellular functions, including proliferation, differentiation, apoptosis, DNA repair, defense against oxidative stress and ageing. FoxOs are regulated by a variety of different growth factors and hormones, and their activity is tightly controlled by post-translational modifications, including phosphorylation, acetylation, ubiquitination and interaction with different proteins and transcription factors. This brief review focuses on the molecular mechanisms, cellular effects and resulting organismal phenotypes generated by differentially regulated FoxO proteins and discusses our current understanding of the role of FoxOs in disease and ageing processes.


Author(s):  
Basiru Olaitan Ajiboye ◽  
Babatunji Emmanuel Oyinloye ◽  
Jennifer Chidera Awurum ◽  
Sunday Amos Onikanni ◽  
Adedotun Adefolalu ◽  
...  

Abstract Objectives The current study evaluates the protective role of aqueous extract of Sterculia tragacantha leaf (AESTL) on pancreatic gene expressions (insulin, PCNA, PDX-1, KI-67 and GLP-1R) and oxidative stress parameters in streptozotocin-induced diabetic rats. Methods Diabetes mellitus was induced into the experimental Wistar animals via intraperitoneal (IP) injection of streptozotocin (35 mg/kg body weight) and 5% glucose water was given to the rats for 24 h after induction. The animals were categorized into five groups of 10 rats each as follows normal control, diabetic control, diabetic rats administered AESTL (150 and 300 mg/kg body weight) and diabetic rats administered metformin (200 mg/kg) orally for two weeks. Thereafter, the animals were euthanized, blood sample collected, pancreas harvested and some pancreatic gene expressions (such as insulin, PCNA, PDX-1, KI-67, and GLP-1R)s as well as oxidative stress parameters were analyzed. Results The results revealed that AESTL significantly (p<0.05) reduced fasting blood glucose level, food and water intake, and lipid peroxidation in diabetic rats. Diabetic rats administered different doses of AESTL showed a substantial upsurge in body weight, antioxidant enzyme activities, and pancreatic gene expressions (insulin, PCNA, PDX-1, KI-67, and GLP-1R). Conclusions It can therefore be concluded that AESTL has the ability to protect the pancreas during diabetes mellitus conditions.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Ghulam Murtaza ◽  
Abida Kalsoom Khan ◽  
Rehana Rashid ◽  
Saiqa Muneer ◽  
Syed Muhammad Farid Hasan ◽  
...  

Several pathologies such as neurodegeneration and cancer are associated with aging, which is affected by many genetic and environmental factors. Healthy aging conceives human longevity, possibly due to carrying the defensive genes. For instance, FOXO (forkhead box O) genes determine human longevity. FOXO transcription factors are involved in the regulation of longevity phenomenon via insulin and insulin-like growth factor signaling. Only one FOXO gene (FOXO DAF-16) exists in invertebrates, while four FOXO genes, that is, FOXO1, FOXO3, FOXO4, and FOXO6 are found in mammals. These four transcription factors are involved in the multiple cellular pathways, which regulate growth, stress resistance, metabolism, cellular differentiation, and apoptosis in mammals. However, the accurate mode of longevity by FOXO factors is unclear until now. This article describes briefly the existing knowledge that is related to the role of FOXO factors in human longevity.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Marina Rascio Henriques Dutra ◽  
Regiane dos Santos Feliciano ◽  
Kalil Ribeiro Jacinto ◽  
Telma Luciana Furtado Gouveia ◽  
Eduardo Brigidio ◽  
...  

Neuroprotection is a desirable process in many neurological disorders, yet complex mechanisms involved in this field are not completely understood. The pilocarpine epilepsy model causes potent, seizure-induced excitotoxicity cell death and mitochondria impairment. The present study is aimed at investigating the role of UCP2, a ROS negative regulator, in the neuroprotection after cholinergic insult. Our data demonstrated that UCP2 expression was augmented in the rat hippocampus 3 days after status epilepticus (SE), reaching a peak on the fifth day, then returning to basal levels. Concomitantly, phospho-AKT expression levels were higher in the hippocampus during the early silent phase (5 days after SE). Additionally, it was demonstrated that the blockade of UCP2 by antisense oligonucleotides (ASO) in SE rats successfully diminished both UCP2 mRNA and protein contents. SE ASO rats presented increased mitochondrial proapoptotic factor expression, caspase-3 activity, inflammatory cytokine expression, and ROS formation. Moreover, ASO treatment diminished p-AKT expression and antioxidant enzyme activities after pilocarpine insult. In conclusion, the present results highlight the neuroprotective actions of UCP2, acting in the inhibition of apoptotic factors and oxidative stress, to increase neuron survival after SE onset.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Bhaskar Ponugoti ◽  
Guangyu Dong ◽  
Dana T. Graves

Diabetes is a chronic metabolic disorder, characterized by hyperglycemia resulting from insulin deficiency and/or insulin resistance. Recent evidence suggests that high levels of reactive oxygen species (ROS) and subsequent oxidative stress are key contributors in the development of diabetic complications. The FOXO family of forkhead transcription factors including FOXO1, FOXO3, FOXO4, and FOXO6 play important roles in the regulation of many cellular and biological processes and are critical regulators of cellular oxidative stress response pathways. FOXO1 transcription factors can affect a number of different tissues including liver, retina, bone, and cell types ranging from hepatocytes to microvascular endothelial cells and pericytes to osteoblasts. They are induced by oxidative stress and contribute to ROS-induced cell damage and apoptosis. In this paper, we discuss the role of FOXO transcription factors in mediating oxidative stress-induced cellular response.


2007 ◽  
Vol 18 (4) ◽  
pp. 1218-1226 ◽  
Author(s):  
Ichiro Kojima ◽  
Tetsuhiro Tanaka ◽  
Reiko Inagi ◽  
Hideki Kato ◽  
Toshiharu Yamashita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document