scholarly journals Homologous Recombination under the Single-Molecule Fluorescence Microscope

2019 ◽  
Vol 20 (23) ◽  
pp. 6102
Author(s):  
Dalton R. Gibbs ◽  
Soma Dhakal

Homologous recombination (HR) is a complex biological process and is central to meiosis and for repair of DNA double-strand breaks. Although the HR process has been the subject of intensive study for more than three decades, the complex protein–protein and protein–DNA interactions during HR present a significant challenge for determining the molecular mechanism(s) of the process. This knowledge gap is largely because of the dynamic interactions between HR proteins and DNA which is difficult to capture by routine biochemical or structural biology methods. In recent years, single-molecule fluorescence microscopy has been a popular method in the field of HR to visualize these complex and dynamic interactions at high spatiotemporal resolution, revealing mechanistic insights of the process. In this review, we describe recent efforts that employ single-molecule fluorescence microscopy to investigate protein–protein and protein–DNA interactions operating on three key DNA-substrates: single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), and four-way DNA called Holliday junction (HJ). We also outline the technological advances and several key insights revealed by these studies in terms of protein assembly on these DNA substrates and highlight the foreseeable promise of single-molecule fluorescence microscopy in advancing our understanding of homologous recombination.

2020 ◽  
Author(s):  
Gurleen Kaur ◽  
Lisanne M. Spenkelink

Abstract Single-molecule fluorescence imaging techniques have become important tools in biological research to gain mechanistic insights into cellular processes. These tools provide unique access to the dynamic and stochastic behaviour of biomolecules. Single-molecule tools are ideally suited to study protein–DNA interactions in reactions reconstituted from purified proteins. The use of linear DNA substrates allows for the study of protein–DNA interactions with observation of the movement and behaviour of DNA-translocating proteins over long distances. Single-molecule studies using long linear DNA substrates have revealed unanticipated insights on the dynamics of multi-protein systems. In this review, we provide an overview of recent methodological advances, including the construction of linear DNA substrates. We highlight the versatility of these substrates by describing their application in different single-molecule fluorescence techniques, with a focus on in vitro reconstituted systems. We discuss insights from key experiments on DNA curtains, DNA-based molecular motor proteins, and multi-protein systems acting on DNA that relied on the use of long linear substrates and single-molecule visualisation. The quality and customisability of linear DNA substrates now allows the insertion of modifications, such as nucleosomes, to create conditions mimicking physiologically relevant crowding and complexity. Furthermore, the current technologies will allow future studies on the real-time visualisation of the interfaces between DNA maintenance processes such as replication and transcription.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Birgit Plochberger ◽  
Clemens Röhrl ◽  
Johannes Preiner ◽  
Christian Rankl ◽  
Mario Brameshuber ◽  
...  

2012 ◽  
Vol 102 (3) ◽  
pp. 723a
Author(s):  
Robin Johnson ◽  
Joseph Schauerte ◽  
Christian Althaus ◽  
Cynthia Carruthers ◽  
Michael Sutton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document