scholarly journals APP Osaka Mutation in Familial Alzheimer’s Disease—Its Discovery, Phenotypes, and Mechanism of Recessive Inheritance

2020 ◽  
Vol 21 (4) ◽  
pp. 1413 ◽  
Author(s):  
Takami Tomiyama ◽  
Hiroyuki Shimada

Alzheimer’s disease is believed to begin with synaptic dysfunction caused by soluble Aβ oligomers. When this oligomer hypothesis was proposed in 2002, there was no direct evidence that Aβ oligomers actually disrupt synaptic function to cause cognitive impairment in humans. In patient brains, both soluble and insoluble Aβ species always coexist, and therefore it is difficult to determine which pathologies are caused by Aβ oligomers and which are caused by amyloid fibrils. Thus, no validity of the oligomer hypothesis was available until the Osaka mutation was discovered. This mutation, which was found in a Japanese pedigree of familial Alzheimer’s disease, is the deletion of codon 693 of APP gene, resulting in mutant Aβ lacking the 22nd glutamate. Only homozygous carriers suffer from dementia. In vitro studies revealed that this mutation has a very unique character that accelerates Aβ oligomerization but does not form amyloid fibrils. Model mice expressing this mutation demonstrated that all pathologies of Alzheimer’s disease can be induced by Aβ oligomers alone. In this review, we describe the story behind the discovery of the Osaka mutation, summarize the mutant’s phenotypes, and propose a mechanism of its recessive inheritance.

Author(s):  
Mireia Seuma ◽  
Andre Faure ◽  
Marta Badia ◽  
Ben Lehner ◽  
Benedetta Bolognesi

AbstractAmyloid fibrils are associated with many human diseases but how mutations alter the propensity of proteins to form fibrils has not been comprehensively investigated and is not well understood. Alzheimer’s Disease (AD) is the most common form of dementia with amyloid plaques of the amyloid beta (Aß) peptide a pathological hallmark of the disease. Mutations in Aß also cause familial forms of AD (fAD). Here we use deep mutational scanning to quantify the effects of >14,000 mutations on the aggregation of Aß. The resulting genetic landscape reveals fundamental mechanistic insights into fibril nucleation, including the importance of charge and gatekeeper residues in the disordered region outside of the amyloid core in preventing nucleation. Strikingly, unlike computational predictors and previous measurements, the in vivo nucleation scores accurately identify all known dominant fAD mutations, validating this simple cell-based assay as highly relevant to the human genetic disease and suggesting accelerated fibril nucleation is the ultimate cause of fAD. Our results provide the first comprehensive map of how mutations alter the formation of any amyloid fibril and a validated resource for the interpretation of genetic variation in Aß.HighlightsFirst comprehensive map of how mutations alter the propensity of a protein to form amyloid fibrils.Charge and gatekeeper residues in the disordered N-terminus of amyloid beta prevent fibril nucleation.Rates of nucleation in a cell-based assay accurately identify the mutations that cause dominant familial Alzheimer’s disease.The combination of deep mutational scanning and human genetics provides a general strategy to quantify the disease-relevance of in vitro and in vivo assays.


Neuron ◽  
1996 ◽  
Vol 17 (5) ◽  
pp. 1005-1013 ◽  
Author(s):  
David R. Borchelt ◽  
Gopal Thinakaran ◽  
Christopher B. Eckman ◽  
Michael K. Lee ◽  
Frances Davenport ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 5091
Author(s):  
Haruki Koike ◽  
Yohei Iguchi ◽  
Kentaro Sahashi ◽  
Masahisa Katsuno

Amyloidosis is a term referring to a group of various protein-misfolding diseases wherein normally soluble proteins form aggregates as insoluble amyloid fibrils. How, or whether, amyloid fibrils contribute to tissue damage in amyloidosis has been the topic of debate. In vitro studies have demonstrated the appearance of small globular oligomeric species during the incubation of amyloid beta peptide (Aβ). Nerve biopsy specimens from patients with systemic amyloidosis have suggested that globular structures similar to Aβ oligomers were generated from amorphous electron-dense materials and later developed into mature amyloid fibrils. Schwann cells adjacent to amyloid fibrils become atrophic and degenerative, suggesting that the direct tissue damage induced by amyloid fibrils plays an important role in systemic amyloidosis. In contrast, there is increasing evidence that oligomers, rather than amyloid fibrils, are responsible for cell death in neurodegenerative diseases, particularly Alzheimer’s disease. Disease-modifying therapies based on the pathophysiology of amyloidosis have now become available. Aducanumab, a human monoclonal antibody against the aggregated form of Aβ, was recently approved for Alzheimer’s disease, and other monoclonal antibodies, including gantenerumab, solanezumab, and lecanemab, could also be up for approval. As many other agents for amyloidosis will be developed in the future, studies to develop sensitive clinical scales for identifying improvement and markers that can act as surrogates for clinical scales should be conducted.


2007 ◽  
Vol 1147 ◽  
pp. 248-255 ◽  
Author(s):  
Caroline Sara Hatchett ◽  
Sue Tyler ◽  
Dawn Armstrong ◽  
David Dawbarn ◽  
Shelley Jane Allen

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nobuto Kakuda ◽  
Mako Takami ◽  
Masayasu Okochi ◽  
Kensaku Kasuga ◽  
Yasuo Ihara ◽  
...  

AbstractPresenilin (PS) with a genetic mutation generates abundant β-amyloid protein (Aβ) 43. Senile plaques are formed by Aβ43 in the cerebral parenchyma together with Aβ42 at middle ages. These brains cause the early onset of Alzheimer’s disease (AD), which is known as familial Alzheimer’s disease (FAD). Based on the stepwise processing model of Aβ generation by γ-secretase, we reassessed the levels of Aβs in the cerebrospinal fluid (CSF) of FAD participants. While low levels of Aβ38, Aβ40, and Aβ42 were generated in the CSF of FAD participants, the levels of Aβ43 were unchanged in some of them compared with other participants. We sought to investigate why the level of Aβ43 was unchanged in FAD participants. These characteristics of Aβ generation were observed in the γ-secretase assay in vitro using cells, which express FAD mutations in PS1. Aβ38 and Aβ40 generation from their precursors, Aβ42 and Aβ43, was decreased in PS1 mutants compared with wild-type (WT) PS1, as observed in the CSF. Both the ratios of Aβ38/Aβ42 and Aβ40/Aβ43 in PS1 mutants were lower than those in the WT. However, the ratio of Aβ43/amyloid precursor protein intracellular domain (AICD) increased in the PS1 mutants in an onset age dependency, while other Aβ/AICD ratios were decreased or unchanged. Importantly, liquid chromatography–mass spectrometry found that the generation of Aβ43 was stimulated from Aβ48 in PS1 mutants. This result indicates that PS1 mutants switched the Aβ43 generating line, which reflects the level of Aβ43 in the CSF and forming senile plaques.


Sign in / Sign up

Export Citation Format

Share Document