scholarly journals Analysis of Putative Epigenetic Regulatory Elements in the FXN Genomic Locus

2020 ◽  
Vol 21 (10) ◽  
pp. 3410
Author(s):  
Iván Fernández-Frías ◽  
Sara Pérez-Luz ◽  
Javier Díaz-Nido

Friedreich’s ataxia (FRDA) is an autosomal recessive disease caused by an abnormally expanded Guanine-Adenine-Adenine (GAA) repeat sequence within the first intron of the frataxin gene (FXN). The molecular mechanisms associated with FRDA are still poorly understood and most studies on FXN gene regulation have been focused on the region around the minimal promoter and the region in which triplet expansion occurs. Nevertheless, since there could be more epigenetic changes involved in the reduced levels of FXN transcripts, the aim of this study was to obtain a more detailed view of the possible regulatory elements by analyzing data from ENCODE and Roadmap consortia databases. This bioinformatic analysis indicated new putative regulatory regions within the FXN genomic locus, including exons, introns, and upstream and downstream regions. Moreover, the region next to the end of intron 4 is of special interest, since the enhancer signals in FRDA-affected tissues are weak or absent in this region, whilst they are strong in the rest of the analyzed tissues. Therefore, these results suggest that there could be a direct relationship between the absence of enhancer sequences in this specific region and their predisposition to be affected in this pathology.

2007 ◽  
Vol 30 (3) ◽  
pp. 242-252 ◽  
Author(s):  
Merav Kedmi ◽  
Avi Orr-Urtreger

Nicotine, acting through the neuronal nicotinic acetylcholine receptors (nAChRs), can induce seizures in mice. We aimed to study brain transcriptional response to seizure and to identify genes whose expression is altered after nicotine-induced seizures. Whole brains of untreated mice were compared with brains 1 h after seizure activity, using Affymetrix U74Av2 microarrays. Experimental groups included wild-type mice and both nicotine-induced seizure-sensitive and -resistant nAChR mutant mice. Each genotype group received different nicotine doses to generate seizures. This approach allowed the identification of significantly changed genes whose expression was dependent on seizure activity, nicotine administration, or both but not on the type of nAChR subunit mutation or the amount of nicotine injected. Significant expression changes were detected in 62 genes ( P < 0.05, false discovery rate correction). Among them, gene ontology functional annotation analysis determined that the most significantly overrepresented categories were of genes encoding MAP kinase phosphatases, regulators of transcription and nucleosome assembly proteins. In silico bioinformatic analysis of the promoter regions of the 62 changed genes detected significant enrichments of 16 transcription regulatory elements (TREs), creating a network of transcriptional regulatory responses to seizures. The TREs for activating transcription factor and serum response factor were most significantly enriched, supporting their association with seizure activity. Our data suggest that nicotine-induced seizure in mice is a useful model to study seizure activity and its global brain transcriptional response. The differentially expressed genes detected here can help us to understand the molecular mechanisms underlying seizures in animal models and may also serve as candidate genes to study epilepsy in humans.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Karolina Stępniak ◽  
Magdalena A. Machnicka ◽  
Jakub Mieczkowski ◽  
Anna Macioszek ◽  
Bartosz Wojtaś ◽  
...  

AbstractChromatin structure and accessibility, and combinatorial binding of transcription factors to regulatory elements in genomic DNA control transcription. Genetic variations in genes encoding histones, epigenetics-related enzymes or modifiers affect chromatin structure/dynamics and result in alterations in gene expression contributing to cancer development or progression. Gliomas are brain tumors frequently associated with epigenetics-related gene deregulation. We perform whole-genome mapping of chromatin accessibility, histone modifications, DNA methylation patterns and transcriptome analysis simultaneously in multiple tumor samples to unravel epigenetic dysfunctions driving gliomagenesis. Based on the results of the integrative analysis of the acquired profiles, we create an atlas of active enhancers and promoters in benign and malignant gliomas. We explore these elements and intersect with Hi-C data to uncover molecular mechanisms instructing gene expression in gliomas.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 836
Author(s):  
Ana Quelle-Regaldie ◽  
Daniel Sobrido-Cameán ◽  
Antón Barreiro-Iglesias ◽  
María Jesús Sobrido ◽  
Laura Sánchez

Autosomal recessive ataxias are much less well studied than autosomal dominant ataxias and there are no clearly defined systems to classify them. Autosomal recessive ataxias, which are characterized by neuronal and multisystemic features, have significant overlapping symptoms with other complex multisystemic recessive disorders. The generation of animal models of neurodegenerative disorders increases our knowledge of their cellular and molecular mechanisms and helps in the search for new therapies. Among animal models, the zebrafish, which shares 70% of its genome with humans, offer the advantages of being small in size and demonstrating rapid development, making them optimal for high throughput drug and genetic screening. Furthermore, embryo and larval transparency allows to visualize cellular processes and central nervous system development in vivo. In this review, we discuss the contributions of zebrafish models to the study of autosomal recessive ataxias characteristic phenotypes, behavior, and gene function, in addition to commenting on possible treatments found in these models. Most of the zebrafish models generated to date recapitulate the main features of recessive ataxias.


2021 ◽  
Vol 20 ◽  
pp. 153303382097752
Author(s):  
Ronghua Wang ◽  
Xiuyun Wang ◽  
Jingtao Zhang ◽  
Yanpei Liu

Background: Long non-coding RNAs (lncRNAs) have been reported to play important roles in the progression of human cancers. Herein, bioinformatic analysis identified that LINC00942 was a highly overexpressed lncRNA in lung adenocarcinoma (LUAD). The present study aimed to explore the roles and possible molecular mechanisms of LINC00942 in LUAD. Methods: First, on the basis of TCGA database, the expression and prognosis of LINC00942 were analyzed in LUAD tissues. Then, si-LINC00942 was transfected into A549 and H1299 cells to knockdown the expression of LINC00942. Cell viability was detected by MTT assay. Flow cytometry was used to analyze cell apoptosis. The expressions of PCNA, Bax, Bcl-2, and wnt/β-catenin pathway proteins were detected by western blotting. Dual-luciferase reporter assay was used to evaluate the regulatory relationship between LINC00942 and miR-5006-5p, or miR-5006-5p and FZD1. Results: We discovered that LINC00942 was up-regulated in LUAD tissues compared with adjacent tissues. Besides, we found the increased LINC00942 expression was associated with poor survival. In addition, silencing of LINC00942 suppressed the proliferation, migration, invasion and facilitated the apoptosis of A549 and H1299 cells. Moreover, silencing of LINC00942 repressed the expression of PCNA, Bcl-2, and enhanced Bax expression in A549 and H1299 cells. Mechanically, LINC00942 exerted its effects via enhancing Wnt signaling. LINC00942 functioned as competing endogenous RNA (ceRNA) by binding to miR-5006-5p, upregulating the expression of FZD1, which was a direct target of miR-5006-5p. Conclusion: Our findings indicated that LINC00942/miR-5006-5p/FZD1 axis played important roles in LUAD growth through enhancing Wnt signaling. LINC00942/miR-5006-5p/FZD1 axis might serve as a potential biomarker and therapeutic target for LUAD treatment.


2021 ◽  
Vol 22 (4) ◽  
pp. 1815 ◽  
Author(s):  
Gabriel Ocana-Santero ◽  
Javier Díaz-Nido ◽  
Saúl Herranz-Martín

Friedreich’s ataxia is an autosomal recessive neurogenetic disease that is mainly associated with atrophy of the spinal cord and progressive neurodegeneration in the cerebellum. The disease is caused by a GAA-expansion in the first intron of the frataxin gene leading to a decreased level of frataxin protein, which results in mitochondrial dysfunction. Currently, there is no effective treatment to delay neurodegeneration in Friedreich’s ataxia. A plausible therapeutic approach is gene therapy. Indeed, Friedreich’s ataxia mouse models have been treated with viral vectors en-coding for either FXN or neurotrophins, such as brain-derived neurotrophic factor showing promising results. Thus, gene therapy is increasingly consolidating as one of the most promising therapies. However, several hurdles have to be overcome, including immunotoxicity and pheno-toxicity. We review the state of the art of gene therapy in Friedreich’s ataxia, addressing the main challenges and the most feasible solutions for them.


1992 ◽  
Vol 286 (1) ◽  
pp. 179-185 ◽  
Author(s):  
C P Simkevich ◽  
J P Thompson ◽  
H Poppleton ◽  
R Raghow

The transcriptional activity of plasmid pCOL-KT, in which human pro alpha 1 (I) collagen gene upstream sequences up to -804 and most of the first intron (+474 to +1440) drive expression of the chloramphenicol acetyltransferase (CAT) gene [Thompson, Simkevich, Holness, Kang & Raghow (1991) J. Biol. Chem. 266, 2549-2556], was tested in a number of mesenchymal and non-mesenchymal cells. We observed that pCOL-KT was readily expressed in fibroblasts of human (IMR-90 and HFL-1), murine (NIH 3T3) and avian (SL-29) origin and in a human rhabdomyosarcoma cell line (A204), but failed to be expressed in human erythroleukaemia (K562) and rat pheochromocytoma (PC12) cells, indicating that the regulatory elements required for appropriate tissue-specific expression of the human pro alpha 1 (I) collagen gene were present in pCOL-KT. To delineate the nature of cis-acting sequences which determine the tissue specificity of pro alpha 1 (I) collagen gene expression, functional consequences of deletions in the promoter and first intron of pCOL-KT were tested in various cell types by transient expression assays. Cis elements in the promoter-proximal and intronic sequences displayed either a positive or a negative influence depending on the cell type. Thus deletion of fragments using EcoRV (nt -625 to -442 deleted), XbaI (-804 to -331) or SstII (+670 to +1440) resulted in 2-10-fold decreased expression in A204 and HFL-1 cells. The negative influences of deletions in the promoter-proximal sequences was apparently considerably relieved by deleting sequences in the first intron, and the constructs containing the EcoRV/SstII or XbaI/SstII double deletions were expressed to a much greater extent than either of the single deletion constructs. In contrast, the XbaI* deletion (nt -804 to -609), either alone or in combination with the intronic deletion, resulted in very high expression in all cells regardless of their collagen phenotype; the XbaI*/(-SstII) construct, which contained the intronic SstII fragment (+670 to +1440) in the reverse orientation, was not expressed in either mesenchymal or nonmesenchymal cells. Based on these results, we conclude that orientation-dependent interactions between negatively acting 5′-upstream sequences and the first intron determine the mesenchymal cell specificity of human pro alpha 1 (I) collagen gene transcription.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Andrew R Bassett ◽  
Asifa Akhtar ◽  
Denise P Barlow ◽  
Adrian P Bird ◽  
Neil Brockdorff ◽  
...  

Although a small number of the vast array of animal long non-coding RNAs (lncRNAs) have known effects on cellular processes examined in vitro, the extent of their contributions to normal cell processes throughout development, differentiation and disease for the most part remains less clear. Phenotypes arising from deletion of an entire genomic locus cannot be unequivocally attributed either to the loss of the lncRNA per se or to the associated loss of other overlapping DNA regulatory elements. The distinction between cis- or trans-effects is also often problematic. We discuss the advantages and challenges associated with the current techniques for studying the in vivo function of lncRNAs in the light of different models of lncRNA molecular mechanism, and reflect on the design of experiments to mutate lncRNA loci. These considerations should assist in the further investigation of these transcriptional products of the genome.


2018 ◽  
Vol 19 (10) ◽  
pp. 3272 ◽  
Author(s):  
Manel Benhassine ◽  
Sylvain Guérin

Because it accounts for 70% of all eye cancers, uveal melanoma (UM) is therefore the most common primary ocular malignancy. In this study, we investigated the molecular mechanisms leading to the aberrant expression of the gene encoding the serotonin receptor 2B (HTR2B), one of the most discriminating among the candidates from the class II gene signature, in metastatic and non-metastatic UM cell lines. Transfection analyses revealed that the upstream regulatory region of the HTR2B gene contains a combination of alternative positive and negative regulatory elements functional in HTR2B− but not in HTR23B+ UM cells. We demonstrated that both the transcription factors nuclear factor I (NFI) and Runt-related transcription factor I (RUNX1) interact with regulatory elements from the HTR2B gene to either activate (NFI) or repress (RUNX1) HTR2B expression in UM cells. The results of this study will help understand better the molecular mechanisms accounting for the abnormal expression of the HTR2B gene in uveal melanoma.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261215
Author(s):  
Qurat-ul ain-Ali ◽  
Nida Mushtaq ◽  
Rabia Amir ◽  
Alvina Gul ◽  
Muhammad Tahir ◽  
...  

Dehydration Responsive Element Binding (DREB) regulates the expression of numerous stress-responsive genes, and hence plays a pivotal role in abiotic stress responses and tolerance in plants. The study aimed to develop a complete overview of the cis-acting regulatory elements (CAREs) present in S. tuberosum DREB gene promoters. A total of one hundred and four (104) cis-regulatory elements (CREs) were identified from 2.5kbp upstream of the start codon (ATG). The in-silico promoter analysis revealed variable sets of cis-elements and functional diversity with the predominance of light-responsive (30%), development-related (20%), abiotic stress-responsive (14%), and hormone-responsive (12%) elements in StDREBs. Among them, two light-responsive elements (Box-4 and G-box) were predicted in 64 and 61 StDREB genes, respectively. Two development-related motifs (AAGAA-motif and as-1) were abundant in StDREB gene promoters. Most of the DREB genes contained one or more Myeloblastosis (MYB) and Myelocytometosis (MYC) elements associated with abiotic stress responses. Hormone-responsive element i.e. ABRE was found in 59 out of 66 StDREB genes, which implied their role in dehydration and salinity stress. Moreover, six proteins were chosen corresponding to A1-A6 StDREB subgroups for secondary structure analysis and three-dimensional protein modeling followed by model validation through PROCHECK server by Ramachandran Plot. The predicted models demonstrated >90% of the residues in the favorable region, which further ensured their reliability. The present study also anticipated pocket binding sites and disordered regions (DRs) to gain insights into the structural flexibility and functional annotation of StDREB proteins. The protein association network determined the interaction of six selected StDREB proteins with potato proteins encoded by other gene families such as MYB and NAC, suggesting their similar functional roles in biological and molecular pathways. Overall, our results provide fundamental information for future functional analysis to understand the precise molecular mechanisms of the DREB gene family in S. tuberosum.


2018 ◽  
Author(s):  
Maayan Barnea ◽  
Merle Stein ◽  
Sabina Winograd-Katz ◽  
Moran Shalev ◽  
Esther Arman ◽  
...  

SummaryThe molecular mechanisms that regulate fusion of monocytes into functional osteoclasts are virtually unknown. We describe a knock-in mouse model for the R51Q mutation in sorting nexin 10 (SNX10) that exhibits osteopetrosis and related symptoms of patients of autosomal recessive osteopetrosis linked to this mutation. Osteopetrosis arises in homozygous R51Q SNX10 mice due to a unique combination of reduced numbers of osteoclasts that are non-functional. Fusion of mutant monocytes is deregulated and occurs rapidly and continuously to form giant, non-functional osteoclasts. Mutant osteoclasts mature quickly and survive poorly in vitro, possibly accounting for their scarcity in vivo. These cells also exhibit impaired ruffled borders, which are required for bone resorption, providing an additional basis for the osteopetrotic phenotype. More broadly, we propose that the maximal size of osteoclasts is actively determined by a genetically-regulated, cell-autonomous mechanism that limits precursor cell fusion, and for which SNX10 is required.


Sign in / Sign up

Export Citation Format

Share Document