scholarly journals Combination of HIV-1 and Diabetes Enhances Blood Brain Barrier Injury via Effects on Brain Endothelium and Pericytes

2020 ◽  
Vol 21 (13) ◽  
pp. 4663
Author(s):  
Slava Rom ◽  
Sachin Gajghate ◽  
Malika Winfield ◽  
Nancy L. Reichenbach ◽  
Yuri Persidsky

Despite combined antiretroviral therapy (ART) achieving efficient HIV replication control, HIV-associated neurocognitive disorders (HAND) continue to be highly prevalent in HIV-infected patients. Diabetes mellitus (DM) is a well-known comorbidity of HAND in HIV-infected patients. Blood brain barrier (BBB) dysfunction has been linked recently to dementia development, specifically in DM patients. BBB injury exists both in HIV and DM, likely contributing to cognitive decline. However, its extent, exact cellular targets and mechanisms are largely unknown. In this report, we found a decrease in pericyte coverage and expression of tight junction proteins in human brain tissues from HIV patients with DM and evidence of HAND when compared to HIV-infected patients without DM or seronegative DM patients. Using our in vitro BBB models, we demonstrated diminution of barrier integrity, enhanced monocyte adhesion, changes in cytoskeleton and overexpression of adhesion molecules in primary human brain endothelial cells or human brain pericytes after exposure to HIV and DM-relevant stimuli. Our study demonstrates for the first-time evidence of impaired BBB function in HIV-DM patients and shows potential mechanisms leading to it in brain endothelium and pericytes that may result in poorer cognitive performance compared to individuals without HIV and DM.

Neuroscience ◽  
2017 ◽  
Vol 350 ◽  
pp. 146-157 ◽  
Author(s):  
Takashi Machida ◽  
Shinya Dohgu ◽  
Fuyuko Takata ◽  
Junichi Matsumoto ◽  
Ikuya Kimura ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Gwenaëlle Le Roux ◽  
Rafika Jarray ◽  
Anne-Cécile Guyot ◽  
Serena Pavoni ◽  
Narciso Costa ◽  
...  

Abstract The development of effective central nervous system (CNS) drugs has been hampered by the lack of robust strategies to mimic the blood-brain barrier (BBB) and cerebrovascular impairments in vitro. Recent technological advancements in BBB modeling using induced pluripotent stem cells (iPSCs) allowed to overcome some of these obstacles, nonetheless the pertinence for their use in drug permeation study remains to be established. This mandatory information requires a cross comparison of in vitro and in vivo pharmacokinetic data in the same species to avoid failure in late clinical drug development. Here, we measured the BBB permeabilities of 8 clinical positron emission tomography (PET) radioligands with known pharmacokinetic parameters in human brain in vivo with a newly developed in vitro iPSC-based human BBB (iPSC-hBBB) model. Our findings showed a good correlation between in vitro and in vivo drug brain permeability (R2 = 0.83; P = 0.008) which contrasted with the limited correlation between in vitro apparent permeability for a set of 18 CNS/non-CNS compounds using the in vitro iPSCs-hBBB model and drug physicochemical properties. Our data suggest that the iPSC-hBBB model can be integrated in a flow scheme of CNS drug screening and potentially used to study species differences in BBB permeation.


2018 ◽  
Author(s):  
Tae-Eun Park ◽  
Nur Mustafaoglu ◽  
Anna Herland ◽  
Ryan Hasselkus ◽  
Robert Mannix ◽  
...  

The highly specialized human brain microvascular endothelium forms a selective blood-brain barrier (BBB) with adjacent pericytes and astrocytes that restricts delivery of many pharmaceuticals and therapeutic antibodies to the central nervous system. Here, we describe an in vitro microfluidic ‘organ-on-a-chip’ (Organ Chip) model of the BBB lined by induced pluripotent stem cell-derived human brain microvascular endothelium (iPS-BMVEC) interfaced with primary human brain astrocytes and pericytes that recapitulates the high level of barrier function of the in vivo human BBB for at least one week in culture. The endothelium expresses high levels of tight junction proteins, multiple functional efflux pumps, and displays selective transcytosis of peptides and anti-transferrin receptor antibodies previously observed in vivo. This increased level of barrier functionality was accomplished using a developmentally-inspired induction protocol that includes a period of differentiation under hypoxic conditions. This enhanced BBB Chip may therefore represent a new in vitro tool for development and validation of delivery systems that transport drugs and therapeutic antibodies across the human BBB.The human blood-brain barrier (BBB) is a unique and selective physiological barrier that controls transport between the blood and the central nervous system (CNS) to maintain homeostasis for optimal brain function. The BBB is composed of brain microvascular endothelial cells (BMVECs) that line the capillaries as well as surrounding extracellular matrix (ECM), pericytes, and astrocytes, which create a microenvironment that is crucial to BBB function1. The brain microvascular endothelium differs from that found in peripheral capillaries based on its complex tight junctions, which restrict paracellular transit and instead, require that transcytosis be used to transport molecules from the blood through the endothelium and into the CNS2. BMVECs also express multiple broad-spectrum efflux pumps on their luminal surface that inhibit uptake of lipophilic molecules, including many drugs, into the brain3,4. The astrocytes and pericytes provide signals that are required for differentiation of the BMVECs5,6, and all three cell types are needed to maintain BBB integrity in vivo as well as in vitro7–9. The BBB is also of major clinical relevance because dysfunction of the BBB associated is observed in many neurological diseases, and the efficacy of drugs designed to treat neurological disorders is often limited by their inability to cross the BBB10. Unfortunately, neither animal models of the BBB nor in vitro cultures of primary or immortalized human BMVECs alone effectively mimic the barrier and transporter functions of the BBB observed in humans11–14. Thus, there is a great need for a human BBB model that could be used to develop new and more effective CNS-targeting therapeutics and delivery technologies as well as advance fundamental and translational research8,9.Development of human induced pluripotent stem (iPS) cell technology has enabled differentiation of brain-like microvascular endothelial cells (iPS-BMVECs) that exhibit many properties of the human BBB, including well-organized tight junctions, expression of nutrient transporters and polarized efflux transporter activity15,16. The trans-endothelial electrical resistance (TEER) values exhibited by the permeability barrier generated by these human iPS-BMVECs reach physiological levels (∼3000-5000 Ω·cm2) within 24-48 h when cultured in Transwell inserts or within a microfluidic organ-on-a-chip (Organ Chip) device15,17–19, a level that is more than an order of magnitude higher than TEER values previously reported in other in vitro human BBB models6,17,20.However, the usefulness of these iPS-BMVEC models for studies on targeted delivery to the CNS is limited because they can only maintain these high TEER levels for ∼2 days, and the expression of efflux pumps in these iPS-BMVECs does not fully mimic those of human brain endothelium in vivo21. Here, we describe the development of an enhanced human BBB model created with microfluidic Organ Chip culture technology22,23 that contains human iPS-BMVECs interfaced with primary human pericytes and astrocytes, and that uses a developmentally-inspired differentiation protocol24–26. The resulting human BBB Chip exhibits physiologically relevant levels of human BBB function for at least one week in vitro, including low barrier permeability and expression of multiple efflux pumps and transporter functions that are required for analysis of drug and therapeutic antibody transport.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Iosif Pediaditakis ◽  
Konstantia R. Kodella ◽  
Dimitris V. Manatakis ◽  
Christopher Y. Le ◽  
Chris D. Hinojosa ◽  
...  

AbstractParkinson’s disease and related synucleinopathies are characterized by the abnormal accumulation of alpha-synuclein aggregates, loss of dopaminergic neurons, and gliosis of the substantia nigra. Although clinical evidence and in vitro studies indicate disruption of the Blood-Brain Barrier in Parkinson’s disease, the mechanisms mediating the endothelial dysfunction is not well understood. Here we leveraged the Organs-on-Chips technology to develop a human Brain-Chip representative of the substantia nigra area of the brain containing dopaminergic neurons, astrocytes, microglia, pericytes, and microvascular brain endothelial cells, cultured under fluid flow. Our αSyn fibril-induced model was capable of reproducing several key aspects of Parkinson’s disease, including accumulation of phosphorylated αSyn (pSer129-αSyn), mitochondrial impairment, neuroinflammation, and compromised barrier function. This model may enable research into the dynamics of cell-cell interactions in human synucleinopathies and serve as a testing platform for target identification and validation of novel therapeutics.


2019 ◽  
Vol 124 ◽  
pp. 61-66 ◽  
Author(s):  
Shinya Dohgu ◽  
Fuyuko Takata ◽  
Junichi Matsumoto ◽  
Ikuya Kimura ◽  
Atsushi Yamauchi ◽  
...  

2019 ◽  
Vol 1 (Supplement_2) ◽  
pp. ii11-ii11 ◽  
Author(s):  
Kenta Ujifuku ◽  
Takashi Fujimoto ◽  
Kei Sato ◽  
Yoichi Morofuji ◽  
Hideki Muto ◽  
...  

Abstract BACKGROUND Metastatic brain tumors associated with poor prognosis and limited treatment options. The blood-brain barrier (BBB) is supposed to play a major role in brain metastasis. However, little is known about the role of pericytes in brain metastasis formation. This study aimed to reveal the expression profile of interaction between pericytes, endothelial cells, and cancer cells. METHODS The Institutional review board approved this study. We established an in vitro BBB model with rat primary cultured BBB-related cells (endothelial cells and pericytes) and investigated the gene expression of pericytes under the lung cancer cell’s coculture circumstances. Pericytes showed inhibition of the KNS-62 cell proliferation significantly (p < 0.05). RNA was extracted from the pericytes using miRNeasy mini kit. Complementary DNA library preparation was performed with QuantSeq 3 ‘mRNA-Seq Library Prep Kit. RNA-seq was performed with MiSeq using MiSeq Reagent Kit v3. Sequencing reads were analyzed on the Maser (TopHat2-CuffLinks2-CummeRbund, TopHat2-HTSeq) and TCC-GUI (EdgeR, DESeq, baySeq) platform. Enrichment analysis was performed at Metascape, and the results were analyzed concerning the OMIM and KEGG databases. RESULT The RIN value of RNA < 8.0 was confirmed. Data quality was acceptable in Fast QC analysis. In TCC differential expressed gene (DEG) analysis, cluster analysis showed that the influence of pericyte lot difference was stronger than the change between cell lines and control. Therefore, lot-specific DEG analysis was performed; the data were pretreated and re-analyzed to try to identify genes involved in the suppression of cancer cell growth. DISCUSSION This study revealed that some expression profiles of brain pericytes implemented in the prevention of metastatic lung cancer cell proliferation in the brain. Pericytes exert an anti-metastatic effect and thus have the potential for the preventive treatment of brain metastasis.


2015 ◽  
Vol 35 (12) ◽  
pp. 1957-1965 ◽  
Author(s):  
Slava Rom ◽  
Holly Dykstra ◽  
Viviana Zuluaga-Ramirez ◽  
Nancy L Reichenbach ◽  
Yuri Persidsky

Pathologic conditions in the central nervous system, regardless of the underlying injury mechanism, show a certain level of blood-brain barrier (BBB) impairment. Endothelial dysfunction is the earliest event in the initiation of vascular damage caused by inflammation due to stroke, atherosclerosis, trauma, or brain infections. Recently, microRNAs (miRNAs) have emerged as a class of gene expression regulators. The relationship between neuroinflammation and miRNA expression in brain endothelium remains unexplored. Previously, we showed the BBB-protective and anti-inflammatory effects of glycogen synthase kinase (GSK) 3β inhibition in brain endothelium in in vitro and in vivo models of neuroinflammation. Using microarray screening, we identified miRNAs induced in primary human brain microvascular endothelial cells after exposure to the pro-inflammatory cytokine, tumor necrosis factor-α, with/out GSK3β inhibition. Among the highly modified miRNAs, let-7 and miR-98 were predicted to target the inflammatory molecules, CCL2 and CCL5. Overexpression of let-7 and miR-98 in vitro and in vivo resulted in reduced leukocyte adhesion to and migration across endothelium, diminished expression of pro-inflammatory cytokines, and increased BBB tightness, attenuating barrier ‘leakiness’ in neuroinflammation conditions. For the first time, we showed that miRNAs could be used as a therapeutic tool to prevent the BBB dysfunction in neuroinflammation.


PLoS ONE ◽  
2012 ◽  
Vol 7 (5) ◽  
pp. e38149 ◽  
Author(s):  
Eduard Urich ◽  
Stanley E. Lazic ◽  
Juliette Molnos ◽  
Isabelle Wells ◽  
Per-Ola Freskgård

Sign in / Sign up

Export Citation Format

Share Document