scholarly journals Robust and Scalable Angiogenesis Assay of Perfused 3D Human iPSC-Derived Endothelium for Anti-Angiogenic Drug Screening

2020 ◽  
Vol 21 (13) ◽  
pp. 4804
Author(s):  
Vincent van Duinen ◽  
Wendy Stam ◽  
Eva Mulder ◽  
Farbod Famili ◽  
Arie Reijerkerk ◽  
...  

To advance pre-clinical vascular drug research, in vitro assays are needed that closely mimic the process of angiogenesis in vivo. Such assays should combine physiological relevant culture conditions with robustness and scalability to enable drug screening. We developed a perfused 3D angiogenesis assay that includes endothelial cells (ECs) from induced pluripotent stem cells (iPSC) and assessed its performance and suitability for anti-angiogenic drug screening. Angiogenic sprouting was compared with primary ECs and showed that the microvessels from iPSC-EC exhibit similar sprouting behavior, including tip cell formation, directional sprouting and lumen formation. Inhibition with sunitinib, a clinically used vascular endothelial growth factor (VEGF) receptor type 2 inhibitor, and 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), a transient glycolysis inhibitor, both significantly reduced the sprouting of both iPSC-ECs and primary ECs, supporting that both cell types show VEGF gradient-driven angiogenic sprouting. The assay performance was quantified for sunitinib, yielding a minimal signal window of 11 and Z-factor of at least 0.75, both meeting the criteria to be used as screening assay. In conclusion, we have developed a robust and scalable assay that includes physiological relevant culture conditions and is amenable to screening of anti-angiogenic compounds.

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Angela Maria Cozzolino ◽  
Valeria Noce ◽  
Cecilia Battistelli ◽  
Alessandra Marchetti ◽  
Germana Grassi ◽  
...  

In many cell types, several cellular processes, such as differentiation of stem/precursor cells, maintenance of differentiated phenotype, motility, adhesion, growth, and survival, strictly depend on the stiffness of extracellular matrix that,in vivo, characterizes their correspondent organ and tissue. In the liver, the stromal rigidity is essential to obtain the correct organ physiology whereas any alteration causes liver cell dysfunctions. The rigidity of the substrate is an element no longer negligible for the cultivation of several cell types, so that many data so far obtained, where cells have been cultured on plastic, could be revised. Regarding liver cells, standard culture conditions lead to the dedifferentiation of primary hepatocytes, transdifferentiation of stellate cells into myofibroblasts, and loss of fenestration of sinusoidal endothelium. Furthermore, standard cultivation of liver stem/precursor cells impedes an efficient execution of the epithelial/hepatocyte differentiation program, leading to the expansion of a cell population expressing only partially liver functions and products. Overcoming these limitations is mandatory for any approach of liver tissue engineering. Here we propose cell lines asin vitromodels of liver stem cells and hepatocytes and an innovative culture method that takes into account the substrate stiffness to obtain, respectively, a rapid and efficient differentiation process and the maintenance of the fully differentiated phenotype.


2009 ◽  
Vol 2 ◽  
pp. MBI.S995 ◽  
Author(s):  
María Antonieta Gordillo ◽  
Antonio Roberto Navarro ◽  
Lidia María Benitez ◽  
Marta Inés Torres De Plaza ◽  
Maria Cristina Maldonado

Bacillus sp strain IBA 33 metabolites, isolated from decaying lemon fruits, were evaluated for the control of pathogenic and non-pathogenic fungi ( Penicillium digitatum, Geotrichum candidum, Penicillium expansum, Aspergillus clavatus, Aspergillus flavus, Aspergillus niger, and Fusarium moniliforme). These metabolites were recovered from Landy medium (LM) without aminoacids. In order to optimize metabolites production the LM was modified by adding different concentrations and sources of amino acids and carbohydrates at different culture conditions. Bacillus sp strain IBA 33 metabolites efficacy to control fungi were evaluated with in vitro and in vivo assays. A. flavus growth inhibition was 52% with the metabolites of Bacillus sp strain IBA 33 recovered from LM (MBLM) in vitro assays. MBLM supplemented with 0.5% glutamic acid, inhibited the growth of P. digitatum, G. candidum, A. clavatus, A. niger and F. moniliforme by 65%, 88.44%, 84%, 34% and 92% respectively. The highest inhibition of P. expansum was 45% with MBLM supplemented with 0.5% aspartic acid. Similar results were obtained in vivo assays. These results showed that Bacillus sp strain IBA 33 metabolites specificity against fungi depended on the composition of the LM.


2020 ◽  
Author(s):  
Marion Duriez ◽  
Agnes Jacquet ◽  
Lucile Hoet ◽  
Sandrine Roche ◽  
Marie-Dominique Bock ◽  
...  

AbstractWe have developed an in vitro preclinical 3D Non-Alcoholic SteatoHepatitis (NASH) model by co-culturing four human primary liver cell types: hepatocytes, stellate, endothelial and Kupffer cells. Cells were embedded in a hydrogel of rat collagen in 96-well plate and a NASH-like environment was induced with a medium containing free fatty acids (FFAs) and tumor necrosis factor α (TNFα). This model was characterized by biochemical, imaging and transcriptomics analysis. On the one hand, we succeed in defining suitable culture conditions to maintain the 3D co-culture up to 10 days in vitro with the lowest level of steatosis, and reproducible low levels of inflammation and fibrosis. On the other hand, we induced NASH disease with a custom medium mimicking NASH features (hepatocyte injury, steatosis, inflammation and fibrosis). The 10-day cell viability and cost effectiveness of the model make it suitable for medium throughput drug screening and provide attractive avenues to better understand disease physiology and to identify and characterize new drug targets.SummaryWe developed a 3D human liver model which exhibits many features of non-alcoholic steatohepatitis and that could become a platform for medium throughput drug screening.


2020 ◽  
Author(s):  
Maria-Bernadette Madel ◽  
He Fu ◽  
Dominique D. Pierroz ◽  
Mariano Schiffrin ◽  
Carine Winkler ◽  
...  

SummaryLong bones from mammals host blood cell formation and contain multiple cell types, including adipocytes. Physiological functions of bone marrow adipocytes are poorly documented. Herein, we used adipocyte-deficient PPARγ-whole body null mice to investigate the consequence of total adipocyte deficiency on bone homeostasis in mice. We first highlight the dual bone phenotype of PPARγ null mice: on the one hand the increase bone formation and subsequent trabecularization extending in the long bone diaphysis, due to the well-known impact of PPARγ deficiency on osteoblasts formation and activity; on the other hand, an increased osteoclastogenesis in the cortical bone. We then further explore the cause of this unexpected increased osteoclastogenesis using two independent models of lipoatrophy, which recapitulated this phenotype. This demonstrates that hyperosteoclastogenesis is not intrinsically linked to PPARγ deficiency, but is a consequence of the total lipodystrophy. We further showed that adiponectin, a cytokine produced by adipocytes and mesenchymal stromal cells is a potent inhibitor of osteoclastogenesis in vitro and in vivo. Moreover, pharmacological activation of adiponectin receptors by the synthetic agonist AdipoRon inhibits mature osteoclast activity both in mouse and human cells by blocking podosome formation through AMPK activation. Finally, we demonstrated that AdipoRon treatment blocks bone erosion in vivo in a murine model of inflammatory bone loss, providing potential new approaches to treat osteoporosis.


2019 ◽  
Vol 93 (12) ◽  
pp. 3397-3418 ◽  
Author(s):  
João Faria ◽  
Sabbir Ahmed ◽  
Karin G. F. Gerritsen ◽  
Silvia M. Mihaila ◽  
Rosalinde Masereeuw

Abstract The kidney is frequently involved in adverse effects caused by exposure to foreign compounds, including drugs. An early prediction of those effects is crucial for allowing novel, safe drugs entering the market. Yet, in current pharmacotherapy, drug-induced nephrotoxicity accounts for up to 25% of the reported serious adverse effects, of which one-third is attributed to antimicrobials use. Adverse drug effects can be due to direct toxicity, for instance as a result of kidney-specific determinants, or indirectly by, e.g., vascular effects or crystals deposition. Currently used in vitro assays do not adequately predict in vivo observed effects, predominantly due to an inadequate preservation of the organs’ microenvironment in the models applied. The kidney is highly complex, composed of a filter unit and a tubular segment, together containing over 20 different cell types. The tubular epithelium is highly polarized, and the maintenance of this polarity is critical for optimal functioning and response to environmental signals. Cell polarity is dependent on communication between cells, which includes paracrine and autocrine signals, as well as biomechanic and chemotactic processes. These processes all influence kidney cell proliferation, migration, and differentiation. For drug disposition studies, this microenvironment is essential for prediction of toxic responses. This review provides an overview of drug-induced injuries to the kidney, details on relevant and translational biomarkers, and advances in 3D cultures of human renal cells, including organoids and kidney-on-a-chip platforms.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3403-3403
Author(s):  
Rentian Feng ◽  
Anna Lokshin ◽  
Elieser Gorelik ◽  
Suzanne Lentzsch

Abstract The majority of drug screening assays are aimed at selection of compounds that affect proliferation or survival of myeloma cells. However, this approach might fail to identify compounds with a potent therapeutic activity that are unable to directly inhibit tumor cell proliferation in vitro but might have potent anti-tumor activity in vivo by targeting the microenvironment of the myeloma cell. For this purpose we used a Multiplex drug-screening assay (MDSA) to identify compounds with potential anti-myeloma activity from a library of 1120 compounds provided by the Multiple Myeloma Research Foundation (MMRF). MDSA is based on use of the Luminex technology (LabMAP Multianalyte Profiling), and testing various myeloma producing factors (MPFs), such as cytokines, chemokines and growth factors that are important for myeloma cell proliferation and survival. The multiple myeloma cell lines MM1.S, RPMI-8226, and IM9 were tested for their capacity to secrete the full set of 31 cytokines, chemokines and growth factors. RPMI-8226 was selected for MDSA due to its high capacity to secrete MPFs (IL-8, VEGF, MCP-1, MIP-1α, MIP-1β, IP10, RANTES and SIL-6R). RPMI-8226 cells were treated with 10 10−6M of each compound (first screening phase) and 1 10−6M (secondary screening), and supernatants from 72-hour cultures were analyzed. The criterion of effective drugs for each cytokine was set up as the ability to inhibit or stimulate MPFs (exceed +/− 1.5 mean value of non-treated control). The resulting data on the drugs were graded by the degree to which they caused inhibition or stimulation of all MPFs (greater than 50% and greater than 90%). A total of 205 of the 1,120 candidates were picked out from the first screening at 10 10−6M. Results from the second analysis (at 1 10−6M) indicated that 14 compounds achieved inhibition of all MPFs and dequalinium dichloride manifested the strongest inhibition of all MPFs. Forty drugs were able to selectively inhibit certain MPFs at levels that exceeded 50% and 14 drugs inhibited MPFs by 90%. With respect to stimulation of cytokine secretion, a total of 39 compounds demonstrated selective stimulation of some MPFs and three drugs (amethopterin (R, S), etoposide, and lasalocid sodium salt) induced stimulation at the level of 90% or greater. Overall, MDSA is a powerful high throughput screening assay to analyze compounds with inhibitory or stimulatory effects on cytokines, chemokines and growth factors that are involved in the pathogenesis of multiple myeloma. Potent compounds identified in this study warrant further investigation for their anti-myeloma effects in vitro and in vivo.


Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1175 ◽  
Author(s):  
Andrea Balduit ◽  
Chiara Agostinis ◽  
Alessandro Mangogna ◽  
Veronica Maggi ◽  
Gabriella Zito ◽  
...  

The development of personalized therapies for ovarian carcinoma patients is still hampered by several limitations, mainly the difficulty of predicting patients’ responses to chemotherapy in tumor cells isolated from peritoneal fluids. The main reason for the low predictive power of in vitro assays is related to the modification of the cancer cells’ phenotype induced by the culture conditions, which results in changes to the activation state and drug sensitivity of tumor cells compared to their in vivo properties. We have defined the optimal culture conditions to set up a prognostic test to predict high-grade serous ovarian carcinoma (HGSOC) patients’ responses to platinum chemotherapy. We evaluated the effects of hyaluronic acid (HA) and fibronectin matrices and the contribution of freezing/thawing processes to the cell response to platinum-based treatment, collecting spheroids from the ascitic fluids of 13 patients with stage II or III HGSOC. Our findings indicated that an efficient model used to generate predictive data for in vivo sensitivity to platinum is culturing fresh spheroids on HA, avoiding the use of previously frozen primary tumor cells. The establishment of this easy, reproducible and standardized testing method can significantly contribute to an improvement in therapeutic effectiveness, thus bringing the prospect of personalized therapy closer for ovarian carcinoma patients.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaoqing Fan ◽  
Haoran Yang ◽  
Lizhu Hu ◽  
Delong Wang ◽  
Ruiting Wang ◽  
...  

Abstract Background Propofol can have adverse effects on developing neurons, leading to cognitive disorders, but the mechanism of such an effect remains elusive. Here, we aimed to investigate the effect of propofol on neuronal development in zebrafish and to identify the molecular mechanism(s) involved in this pathway. Methods The effect of propofol on neuronal development was demonstrated by a series of in vitro and in vivo experiments. mRNA injections, whole-mount in situ hybridization and immunohistochemistry, quantitative real-time polymerase chain reaction, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling, 5-ethynyl-2′-deoxyuridine labeling, co-immunoprecipitation, and acyl–biotin exchange labeling were used to identify the potential mechanisms of propofol-mediated zisp expression and determine its effect on the specification of retinal cell types. Results Propofol impaired the specification of retinal cell types, thereby inhibiting neuronal and glial cell formation in retinas, mainly through the inhibition of Zisp expression. Furthermore, Zisp promoted the stabilization and secretion of a soluble form of the membrane-associated protein Noggin-1, a specific palmitoylation substrate. Conclusions Propofol caused a severe phenotype during neuronal development in zebrafish. Our findings established a direct link between an anesthetic agent and protein palmitoylation in the regulation of neuronal development. This could be used to investigate the mechanisms via which the improper use of propofol might result in neuronal defects.


2018 ◽  
Vol 27 (1) ◽  
pp. 31-44 ◽  
Author(s):  
Marta Magatti ◽  
Elsa Vertua ◽  
Anna Cargnoni ◽  
Antonietta Silini ◽  
Ornella Parolini

Among the many cell types useful in developing therapeutic treatments, human amniotic cells from placenta have been proposed as valid candidates. Both human amniotic epithelial and mesenchymal stromal cells, and the conditioned medium generated from their culture, exert multiple immunosuppressive activities. Indeed, they inhibit T and B cell proliferation, suppress inflammatory properties of monocytes, macrophages, dendritic cells, neutrophils, and natural killer cells, while promoting induction of cells with regulatory functions such as regulatory T cells and anti-inflammatory M2 macrophages. These properties have laid the foundation for their use for the treatment of inflammatory-based diseases, and encouraging results have been obtained in different preclinical disease models where exacerbated inflammation is present. Moreover, an immune-privileged status of amniotic cells has been often highlighted. However, even if long-term engraftment of amniotic cells has been reported into immunocompetent animals, only few cells survive after infusion. Furthermore, amniotic cells have been shown to be able to induce immune responses in vivo and, under specific culture conditions, they can stimulate T cell proliferation in vitro. Although immunosuppressive properties are a widely recognized characteristic of amniotic cells, immunogenic and stimulatory activities appear to be less reported, sporadic events. In order to improve therapeutic outcome, the mechanisms responsible for the suppressive versus stimulatory activity need to be carefully addressed. In this review, both the immunosuppressive and immunostimulatory activity of amniotic cells will be discussed.


1986 ◽  
Vol 82 (1) ◽  
pp. 263-280
Author(s):  
R.A. Clark ◽  
J.M. Folkvord ◽  
L.D. Nielsen

Recently, we have presented evidence that proliferating blood vessels produce and deposit fibronectin in situ during the angiogenesis of wound repair. This report extends these observations by demonstrating that human endothelial cells from both large and small vessels depend on fibronectin for their adherence in vitro. Endothelial cells were grown from human umbilical veins (HUVEC) by the method of Gimbrone and from the microvasculature of human omentum by the method of Kern, Knedler and Eckel. Second-passage cells were plated into microtitre wells that had been coated with 100 micrograms ml-1 of fibronectin, types I and III collagen, type IV collagen or laminin. After a 3-h incubation, adherent cells were solubilized with Zap-Isoton and quantified on a Coulter Counter. Under normal culture conditions HUVEC showed no preference for fibronectin substrates while microvascular cells always demonstrated a striking preference for fibronectin substrates. However, when HUVEC were exposed to 2.5 or 25 micrograms ml-1 of cycloheximide for 4 h before and during the adherence assays, the adherence to fibronectin was 50–200% greater than to types I and III collagen. Immunofluorescence studies showed that while HUVEC expressed a large quantity of surface fibronectin, microvascular cells expressed very little. Metabolic labelling studies confirmed that HUVEC cultures had substantial quantities of fibronectin in their cell layer while microvascular cells did not. In antibody blocking experiments, preincubation of fibronectin-coated surfaces with anti-fibronectin antibodies totally blocked microvascular cell adhesion but only abrogated HUVEC adherence by 50%, presumably since these latter cells were able to deposit additional fibronectin onto the surface during the 3 h assay period. In the presence of cycloheximide anti-fibronectin antibodies totally blocked HUVEC adherence. These results demonstrate that both endothelial cell types rely, at least in part, on fibronectin for adherence in vitro. HUVEC can synthesize, secrete and deposit enough fibronectin for their adherence in vitro, while microvascular cells rely on an exogenous source of fibronectin under these culture conditions. Thus, the increased blood vessel fibronectin observed during angiogenesis in vivo may mediate adherence of the proliferating and migrating endothelial cells.


Sign in / Sign up

Export Citation Format

Share Document