scholarly journals Adenosine A2a Receptor Stimulation Attenuates Ischemia-Reperfusion Injury and Improves Survival in A Porcine Model of DCD Liver Transplantation

2020 ◽  
Vol 21 (18) ◽  
pp. 6747
Author(s):  
Zoltan Czigany ◽  
Eve Christiana Craigie ◽  
Georg Lurje ◽  
Shaowei Song ◽  
Kei Yonezawa ◽  
...  

Orthotopic liver transplantation (OLT) using allografts from donation after circulatory death (DCD) is potentially associated with compromised clinical outcomes due to ischemia-reperfusion injury (IRI)-induced organ damage and graft-related complications. The aim of this study was to provide in vivo data on the effects of adenosine A2a receptor stimulation in a clinically relevant large animal model of DCD liver transplantation. Cardiac arrest was induced in German Landrace pigs (n = 10; 20–25 kg). After 30 min of warm ischemia, the donor liver was retrieved following a cold flush with 3 L of histidine-tryptophan-ketoglutarate-HTK solution. Animals of the treatment group (n = 5/group) received a standard dose of the selective adenosine receptor agonist CGS 21680 added to the cold flush. All grafts were stored for 4.5 h at 4 °C in HTK-solution before OLT. Hepatocellular injury, apoptosis, protein kinase A-PKA activity, graft microcirculation, liver function, and animal survival were assessed. Compared to untreated livers, adenosine A2a receptor stimulation resulted in improved tissue microcirculation (103% ± 5% vs. 38% ± 4% compared to baseline; p < 0.05), accelerated functional recovery of the graft (indocyanine green-plasma disappearance rate (ICG-PDR) of 75% ± 18% vs. 40% ± 30% after 3 h), increased PKA activity ratio (56% ± 3% vs. 32% ± 3%; p < 0.001 after 1 h), and consequently reduced tissue necrosis and apoptosis. The potent protective effects were clinically manifested in significantly improved survival in the treatment group after 72 h (100% vs. 40%; p = 0.04). The ex vivo administration of adenosine A2a receptor agonist during the back-table flush mitigates IRI-mediated tissue damage and improves functional graft recovery and survival in a large animal model of DCD liver transplantation.

2005 ◽  
Vol 79 (4) ◽  
pp. 1189-1195 ◽  
Author(s):  
T. Brett Reece ◽  
Victor E. Laubach ◽  
Curtis G. Tribble ◽  
Thomas S. Maxey ◽  
Peter I. Ellman ◽  
...  

APOPTOSIS ◽  
2005 ◽  
Vol 10 (5) ◽  
pp. 955-962 ◽  
Author(s):  
Z. Ben-Ari ◽  
O. Pappo ◽  
J. Sulkes ◽  
Y. Cheporko ◽  
B. A. Vidne ◽  
...  

2019 ◽  
Vol 10 ◽  
Author(s):  
Claudia Sorrentino ◽  
Fokhrul Hossain ◽  
Paulo C. Rodriguez ◽  
Rosa A. Sierra ◽  
Antonio Pannuti ◽  
...  

2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Byeong Woo KIm ◽  
Sun hee Kim ◽  
Ki beom Bae

Abstract Background and Aims We demonstrate the marked activity of SW033291, an inhibitor of 15-hydoxyprostaglandin dehydrogenase (15-PGDH), in preventing acute kidney injury (AKI) in a murine model of ischemia reperfusion injury (IRI). AKI due to ischemic injury represents a significant clinical problem. Prostaglandin E2 (PGE2) is vasodilator in the kidney, but is rapidly degraded in vivo due to catabolism by 15-PGDH. We investigated the potential of SW033291, a potent and specific 15-PGDH inhibitor, as prophylactic treatment for ischemic AKI. Method 10-week aged male C57/BL6 mice were randomly allocated to five groups (n=8 to 15 in each group): the sham-control group, sham-SW033291 group, IRI-vehicle group, IRI-indomethacin group and the IRI-SW033291 group. IRI were induced by clamping bilateral renal artery for 30 min followed by 24 hours of reperfusion. Vehicle, indomethacin, or SW033291 were intraperitoneally administered three times at 1 hour before, immediately after, and 12 hours after IRI. Renal function, histological changes, and renal blood flow were compared and the relevant parameters of oxidative stress and inflammation were detected. Results Prophylactic administration of SW033291 significantly increased renal tissue PGE2 levels and increased post-AKI renal blood flow and renal arteriole area. In parallel, prophylactic SW033291 decreased post-AKI histologic injury score and tubular apoptosis and markedly reduced biomarkers of renal injury that included BUN, creatinine, NGAL and KIM-1. Prophylactic SW033291 also reduced post-AKI induction of proinflammatory cytokines, high mobility group box 1 (HMGB1), and malondialdehyde (MDA). Protective effects of SW033291 were mediated by PGE2 signaling as they could be blocked by pharmacologic inhibition of PGE2 synthesis or of the EP4 type PGE2 receptor. Consistent with activation of PGE2 signaling, SW033291 induced renal levels of both EP4 and of cyclic adenosine monophosphate (cAMP), along with other vasodilatory effectors including AMP, adenosine, and the adenosine A2A receptor (A2A). Protective effects of SW0333291 could largely be achieved with a single prophylactic dose of the drug. Conclusion Inhibiting 15-PGDH may thus represent a novel strategy for prophylaxis of ischemic AKI in multiple clinical settings, including renal transplantation and cardiovascular surgery.


Sign in / Sign up

Export Citation Format

Share Document