scholarly journals Cannabidiol for Pain Treatment: Focus on Pharmacology and Mechanism of Action

2020 ◽  
Vol 21 (22) ◽  
pp. 8870 ◽  
Author(s):  
Jakub Mlost ◽  
Marta Bryk ◽  
Katarzyna Starowicz

Cannabis has a long history of medical use. Although there are many cannabinoids present in cannabis, Δ9tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) are the two components found in the highest concentrations. CBD itself does not produce typical behavioral cannabimimetic effects and was thought not to be responsible for psychotropic effects of cannabis. Numerous anecdotal findings testify to the therapeutic effects of CBD, which in some cases were further supported by research findings. However, data regarding CBD’s mechanism of action and therapeutic potential are abundant and omnifarious. Therefore, we review the basic research regarding molecular mechanism of CBD’s action with particular focus on its analgesic potential. Moreover, this article describes the detailed analgesic and anti-inflammatory effects of CBD in various models, including neuropathic pain, inflammatory pain, osteoarthritis and others. The dose and route of the administration-dependent effect of CBD, on the reduction in pain, hyperalgesia or allodynia, as well as the production of pro and anti-inflammatory cytokines, were described depending on the disease model. The clinical applications of CBD-containing drugs are also mentioned. The data presented herein unravel what is known about CBD’s pharmacodynamics and analgesic effects to provide the reader with current state-of-art knowledge regarding CBD’s action and future perspectives for research.

2021 ◽  
Vol 14 (9) ◽  
pp. 868
Author(s):  
Beatriz Godínez-Chaparro ◽  
Fabiola Guzmán-Mejía ◽  
Maria Elisa Drago-Serrano

Pain is one of the most disabling symptoms of several clinical conditions. Neurobiologically, it is classified as nociceptive, inflammatory, neuropathic and dysfunctional. Opioids and nonsteroidal anti-inflammatory drugs (NSAIDs) are conventionally prescribed for the treatment of pain. Long-term administration of opioids results in the loss of analgesic efficacy, leading to increased dosage, tolerance, and addiction as the main drawbacks of their use, while the adverse effects of NSAIDs include gastric ulcer formation, intestinal bleeding, acute kidney injury, and hepatotoxicity. Lactoferrin is an iron-binding, anti-inflammatory glycoprotein that displays analgesic activities associated, in part, by interacting with the low-density lipoprotein receptor-related protein (LRP), which may result in the regulation of the DAMP–TRAF6–NFκB, NO–cGMP–ATP K+-sensitive channel and opioid receptor signaling pathways. This review summarizes and discusses for the first time the analgesic effects of lactoferrin and its presumable mechanisms based on pre-clinical trials. Given its anti-nociceptive and anti-inflammatory properties, lactoferrin may be used as an adjunct to enhance the efficacy and to decrease the tolerogenic effects of canonical therapeutic drugs prescribed for pain treatment.


Author(s):  
Bahareh Sadat Yousefsani ◽  
Motahareh Boozari ◽  
Kobra Shirani ◽  
Amirhossein Jamshidi ◽  
Majid Dadmehr

Abstract Objectives Iris germanica L. is a medicinal plant, which has a long history of uses, mainly in medieval Persia and many places worldwide for the management of a wide variety of diseases. In this study, we aimed to review ethnopharmacological applications in addition to phytochemical and pharmacological properties of I. germanica. Key findings Ethnomedical uses of I. germanica have been reported from many countries such as China, Pakistan, India, Iran and Turkey. The medicinal part of I. germanica is the rhizome and the roots. Based on phytochemical investigations, different bioactive compounds, including flavonoids, triterpenes, sterols, phenolics, ceramides and benzoquinones, have been identified in its medicinal parts. Current pharmacological studies represent that the plant possesses several biological and therapeutic effects, including neuroprotective, hypoglycaemic, hypolipidaemic, antimicrobial, antioxidant, antiproliferative, anti-inflammatory, antiplasmodial, antifungal, immunomodulatory, cytotoxic and antimutagenic effects. Summary Although the majority of preclinical studies reported various pharmacological activities of this plant, however, sufficient clinical trials are not currently available. Therefore, to draw a definitive conclusion about the efficacy and therapeutic activities of I. germanica and its bioactive compounds, further clinical and experimental studies are required. Moreover, it is necessary to focus on the pharmacokinetic and safety studies on the extracts of I. germanica.


2021 ◽  
Vol 13 (1) ◽  
pp. e5663
Author(s):  
Kessya Lanny Sousa Dantas ◽  
Kassyo Lenno Sousa Dantas ◽  
Eduardo Soares Dos Santos ◽  
Júlio Evangelista De Lucena ◽  
Milena Sousa Freitas ◽  
...  

Objective: To describe the importance of medicinal plants in the social and pharmacological context, demonstrating the anti-inflammatory therapeutic potential and the mechanism of action of drugs present in the chemical composition of four plants present in the Brazilian flora. Methods: A bibliographic survey on the topic was carried out, using the descriptors: Activity, Anti-inflammatory, Plants, Flora, Brazilian. In Scielo, Google Scholar and PUBMED databases. For the inclusion of works, the following criteria were used: Articles from research relevant to the topic (regardless of date) and relevant publications from the year 2007. Results: The inflammatory process is a target for the treatment of various diseases and development new treatments are needed. We discuss here the anti-inflammatory potential and the mechanism of action of the following plants: Uncaria tomentosa, Schinus terebinthifolius Raddi and Mentha piperita demonstrated through in vitro studies and murine models of diseases. The species showed anti-inflammatory action by reducing the production of inflammatory mediators and inhibiting the activity of important pro-inflammatory enzymes, such as phospholipase A2 and cycloxygenase. Final considerations: The four plant species covered in this article had significant anti-inflammatory effects, therefore, they can be suggested as a source of potential new drugs.


2020 ◽  
Vol 20 (8) ◽  
pp. 593-606
Author(s):  
Grecia E. Barriga Montalvo ◽  
Luciana Porto de Souza Vandenberghe ◽  
Vanete Thomaz Soccol ◽  
Júlio Cesar de Carvalho ◽  
Carlos Ricardo Soccol

: The interest in biological peptides from Arthrospira sp. (syn Spirulina) is increasing due to its Generally Recognised as Safe “GRAS” status, the high concentration of proteins and the history of its use as a supplement and nutraceutical agent. Arthrospira peptides can be generated by the controlled hydrolysis of proteins, using proteases, followed by fractionation. The peptides obtained have a range of therapeutic effects. Amongst these bioactive peptides, three classes are of major importance: the antihypertensive (AHP), antimicrobial (AMP) and anticancer (ACP) peptides. AHPs have the ability to work as inhibitors of angiotensin-converting enzyme (ACE), and help to control several diseases such as hypertension, obesity, and cardiovascular issues, AMPs play a crucial role in the immune response, inhibiting the development of pathogens such as bacteria, fungi, viruses and others, while ACPs can aid in tumour control by the induction of apoptosis or necrosis, or the inhibition of angiogenesis. Thus, bioactive peptides are of great significance to the pharmaceutical industry. However, they can show secondary effects. This paper reviews the inhibition mechanism of antimicrobial, hypertensive and anticancer peptides from Arthrospira sp., and the possible structures of the peptides according to the type of activity and its intensity. In addition, this paper describes the purification methods of absorption mechanisms, and reviews databases for designing peptides.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Mengling Yang ◽  
Yinmiao Dong ◽  
Qingnan He ◽  
Ping Zhu ◽  
Quan Zhuang ◽  
...  

H2 has shown anti-inflammatory and antioxidant ability in many clinical trials, and its application is recommended in the latest Chinese novel coronavirus pneumonia (NCP) treatment guidelines. Clinical experiments have revealed the surprising finding that H2 gas may protect the lungs and extrapulmonary organs from pathological stimuli in NCP patients. The potential mechanisms underlying the action of H2 gas are not clear. H2 gas may regulate the anti-inflammatory and antioxidant activity, mitochondrial energy metabolism, endoplasmic reticulum stress, the immune system, and cell death (apoptosis, autophagy, pyroptosis, ferroptosis, and circadian clock, among others) and has therapeutic potential for many systemic diseases. This paper reviews the basic research and the latest clinical applications of H2 gas in multiorgan system diseases to establish strategies for the clinical treatment for various diseases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Niraj Kumar Jha ◽  
Charu Sharma ◽  
Hebaallah Mamdouh Hashiesh ◽  
Seenipandi Arunachalam ◽  
MF Nagoor Meeran ◽  
...  

Coronavirus disease (COVID-19), caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing pandemic and presents a public health emergency. It has affected millions of people and continues to affect more, despite tremendous social preventive measures. Identifying candidate drugs for the prevention and treatment of COVID-19 is crucial. The pathogenesis and the complications with advanced infection mainly involve an immune-inflammatory cascade. Therefore, therapeutic strategy relies on suppressing infectivity and inflammation, along with immune modulation. One of the most promising therapeutic targets for the modulation of immune-inflammatory responses is the endocannabinoid system, particularly the activation of cannabinoid type 2 receptors (CB2R), a G-protein coupled receptor which mediates the anti-inflammatory properties by modulating numerous signaling pathways. To pharmacologically activate the CB2 receptors, a naturally occurring cannabinoid ligand, beta-caryophyllene (BCP), received attention due to its potent anti-inflammatory, antiviral, and immunomodulatory properties. BCP is recognized as a full selective functional agonist on CB2 receptors and produces therapeutic effects by activating CB2 and the nuclear receptors, peroxisome proliferator-activated receptors (PPARs). BCP is regarded as the first dietary cannabinoid with abundant presence across cannabis and non-cannabis plants, including spices and other edible plants. BCP showed tissue protective properties and favorably modulates numerous signaling pathways and inhibits inflammatory mediators, including cytokines, chemokines, adhesion molecules, prostanoids, and eicosanoids. Based on its pharmacological properties, molecular mechanisms, and the therapeutic potential of BCP as an immunomodulator, anti-inflammatory, organ-protective, and antiviral, we hypothesize that BCP could be a promising therapeutic and/or preventive candidate to target the triad of infection, immunity, and inflammation in COVID-19. In line with numerous studies that proposed the potential of cannabinoids in COVID-19, BCP may be a novel candidate compound for pharmaceutical and nutraceutical development due to its unique functional receptor selectivity, wide availability and accessibility, dietary bioavailability, nonpsychoactivity, and negligible toxicity along with druggable properties, including favorable pharmacokinetic and physicochemical properties. Based on reasonable pharmacological mechanisms and therapeutic properties, we speculate that BCP has potential to be investigated against COVID-19 and will inspire further preclinical and clinical studies.


2020 ◽  
Vol 11 (SPL3) ◽  
pp. 927-930
Author(s):  
Nithyanandham Masilamani ◽  
Dhanraj Ganapathy

Black pepper includes the many commonly used ingredients upon this planet, remarkable for some of its potent component piperine. White pepper is made with closely related species, while black pepper is prepared by fast processing and wind drying of underripe natural products, white pepper is made from dried, regular and ready-mixed seeds. Piperine has been the conventional biologically active conjugate of Piper nigrum and Piper longum, having been taken into consideration for therapeutic effects. The purpose of this survey was for assessing the awareness of medicinal applications of Piper nigrum amongst dental students. A cross-sectional survey was done with a self-administered questionnaire with 10 questions circulated among 100 dental students. The questionnaire assessed the awareness about Piper nigrumtherapy in medical applications, their immunomodulatory properties, antipyretic properties, antispasmodic activity, anti-inflammatory activity, and its mechanism of action and side effects. The responses were recorded and analysed. 16% of the respondents were aware of the medical applications of Piper nigrum therapy.11 % were aware of the anti immunomodulatory activity of Piper nigrum therapy .9 % were aware of antipyretic properties of Piper nigrum therapy .13 % were aware of antispasmodic properties of Piper nigrum therapy .10 % were aware of anti-inflammatory properties of Piper nigrum therapy . 6 % were an aware mechanism of action and side effects of Piper nigrum therapy. The awareness about the use of Piper nigrum therapy in medicinal applications is low among dental students. Increased awareness programs and sensitization and continuing dental education programs along with greater importance to the curricular modifications, can further enhance knowledge and awareness about Piper nigrum therapy.


2021 ◽  
Vol 22 (6) ◽  
pp. 3023
Author(s):  
Sean T. Ryan ◽  
Elham Hosseini-Beheshti ◽  
Dinara Afrose ◽  
Xianting Ding ◽  
Binbin Xia ◽  
...  

Over the past two decades, mesenchymal stromal cells (MSCs) have demonstrated great potential in the treatment of inflammation-related conditions. Numerous early stage clinical trials have suggested that this treatment strategy has potential to lead to significant improvements in clinical outcomes. While promising, there remain substantial regulatory hurdles, safety concerns, and logistical issues that need to be addressed before cell-based treatments can have widespread clinical impact. These drawbacks, along with research aimed at elucidating the mechanisms by which MSCs exert their therapeutic effects, have inspired the development of extracellular vesicles (EVs) as anti-inflammatory therapeutic agents. The use of MSC-derived EVs for treating inflammation-related conditions has shown therapeutic potential in both in vitro and small animal studies. This review will explore the current research landscape pertaining to the use of MSC-derived EVs as anti-inflammatory and pro-regenerative agents in a range of inflammation-related conditions: osteoarthritis, rheumatoid arthritis, Alzheimer’s disease, cardiovascular disease, and preeclampsia. Along with this, the mechanisms by which MSC-derived EVs exert their beneficial effects on the damaged or degenerative tissues will be reviewed, giving insight into their therapeutic potential. Challenges and future perspectives on the use of MSC-derived EVs for the treatment of inflammation-related conditions will be discussed.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Nabil Serrano ◽  
Marc Kissling ◽  
Hannah Krafft ◽  
Karl Link ◽  
Oliver Ullrich ◽  
...  

Abstract Background For optimal prosthetic anchoring in omarthritis surgery, a differentiated knowledge on the mineralisation distribution of the glenoid is important. However, database on the mineralisation of diseased joints and potential relations with glenoid angles is limited. Methods Shoulder specimens from ten female and nine male body donors with an average age of 81.5 years were investigated. Using 3D-CT-multiplanar reconstruction, glenoid inclination and retroversion angles were measured, and osteoarthritis signs graded. Computed Tomography-Osteoabsorptiometry (CT-OAM) is an established method to determine the subchondral bone plate mineralisation, which has been demonstrated to serve as marker for the long-term loading history of joints. Based on mineralisation distribution mappings of healthy shoulder specimens, physiological and different CT-OAM patterns were compared with glenoid angles. Results Osteoarthritis grades were 0-I in 52.6% of the 3D-CT-scans, grades II-III in 34.3%, and grade IV in 13.2%, with in females twice as frequently (45%) higher grades (III, IV) than in males (22%, III). The average inclination angle was 8.4°. In glenoids with inclination ≤10°, mineralisation was predominantly centrally distributed and tended to shift more cranially when the inclination raised to > 10°. The average retroversion angle was − 5.2°. A dorsally enhanced mineralisation distribution was found in glenoids with versions from − 15.9° to + 1.7°. A predominantly centrally distributed mineralisation was accompanied by a narrower range of retroversion angles between − 10° to − 0.4°. Conclusions This study is one of the first to combine CT-based analyses of glenoid angles and mineralisation distribution in an elderly population. The data set is limited to 19 individuals, however, indicates that superior inclination between 0° and 10°-15°, and dorsal version ranging between − 9° to − 3° may be predominantly associated with anterior and central mineralisation patterns previously classified as physiological for the shoulder joint. The current basic research findings may serve as basic data set for future studies addressing the glenoid geometry for treatment planning in omarthritis.


Sign in / Sign up

Export Citation Format

Share Document