scholarly journals Angiotensin-(1-7) Prevents Lipopolysaccharide-Induced Autophagy via the Mas Receptor in Skeletal Muscle

2020 ◽  
Vol 21 (24) ◽  
pp. 9344
Author(s):  
Juan Carlos Rivera ◽  
Johanna Abrigo ◽  
Franco Tacchi ◽  
Felipe Simon ◽  
Enrique Brandan ◽  
...  

Skeletal muscle atrophy, which occurs in lipopolysaccharide (LPS)-induced sepsis, causes a severe muscle function reduction. The increased autophagy contributes to sepsis-induced skeletal muscle atrophy in a model of LPS injection, increasing LC3II/LC3I ratio, autophagy flux, and autophagosomes. Angiotensin-(1-7) (Ang-(1-7)) has anti-atrophic effects via the Mas receptor in skeletal muscle. However, the impact of Ang-(1-7) on LPS-induced autophagy is unknown. In this study, we determined the effect of Ang-(1-7) on sepsis-induced muscle autophagy. C57BL6 wild-type (WT) mice and mice lacking the Mas receptor (KO Mas) were injected with LPS together with the systemic administration of Ang-(1-7) to determine autophagy in skeletal muscle. We also evaluated autophagy and p38 and c-Jun N-terminal kinase (JNK)activation. Our results show that Ang-(1-7) prevents LPS-induced autophagy in the diaphragm, tibialis anterior, and gastrocnemius of WT mice, which is demonstrated by a decrease in the LC3II/LC3I ratio and mRNA levels of lc3b and ctsl. This effect was lost in KO Mas mice, suggesting the role of the Mas receptor. The results in C2C12 cells show that Ang-(1-7) reduces several LPS-dependent effects, such as autophagy (LC3II/LC3I ratio, autophagic flux, and autophagosomes), activation of p38 and JNK, B-cell lymphoma-2 (BCL2) phosphorylation, and disassembly of the Beclin1/BCL2 complex. In conclusion, Ang-(1-7)/Mas receptor reduces LPS-induced autophagy in skeletal muscle. In vitro assays indicate that Ang-(1-7) prevents LPS-induced autophagy and modifies the MAPK signaling and the disassembly of a complex involved at the beginning of autophagy.

2015 ◽  
Vol 224 (3) ◽  
pp. 303-313 ◽  
Author(s):  
Jonathan M Mudry ◽  
Julie Massart ◽  
Ferenc L M Szekeres ◽  
Anna Krook

TWIST proteins are important for development of embryonic skeletal muscle and play a role in the metabolism of tumor and white adipose tissue. The impact of TWIST on metabolism in skeletal muscle is incompletely studied. Our aim was to assess the impact of TWIST1 and TWIST2 overexpression on glucose and lipid metabolism. In intact mouse muscle, overexpression of Twist reduced total glycogen content without altering glucose uptake. Expression of TWIST1 or TWIST2 reducedPdk4mRNA, while increasing mRNA levels ofIl6,Tnfα, andIl1β. Phosphorylation of AKT was increased and protein abundance of acetyl CoA carboxylase (ACC) was decreased in skeletal muscle overexpressing TWIST1 or TWIST2. Glycogen synthesis and fatty acid oxidation remained stable in C2C12 cells overexpressing TWIST1 or TWIST2. Finally, skeletal muscle mRNA levels remain unaltered inob/obmice, type 2 diabetic patients, or in healthy subjects before and after 3 months of exercise training. Collectively, our results indicate that TWIST1 and TWIST2 are expressed in skeletal muscle. Overexpression of these proteins impacts proteins in metabolic pathways and mRNA level of cytokines. However, skeletal muscle levels of TWIST transcripts are unaltered in metabolic diseases.


2007 ◽  
Vol 292 (6) ◽  
pp. E1555-E1567 ◽  
Author(s):  
Brian J. Krawiec ◽  
Gerald J. Nystrom ◽  
Robert A. Frost ◽  
Leonard S. Jefferson ◽  
Charles H. Lang

The hypothesis of the present study was that exposure of differentiated muscle cells to agonists of the AMP-activated protein kinase (AMPK) would increase the mRNA content of the muscle-specific ubiquitin ligases muscle atrophy F-box (MAFbx) and muscle RING finger 1 (MuRF1). C2C12 cells were incubated with incremental doses of 5-aminoimidazol-4-carboximide ribonucleoside (AICAR) or metformin for 24 h. Both MAFbx and MuRF1 mRNA increased dose dependently in response to these AMPK activators. AICAR, metformin, and 2-deoxy-d-glucose produced time-dependent alterations in ubiquitin ligase expression, typified by a biphasic pattern of expression marked by an acute repression followed by a sustained induction. AMPK-activating treatments in conjunction with dexamethasone produced a pronounced synergistic effect on ligase mRNA expression at later time points. This cooperative response occurred in the absence of a dexamethasone-dependent increase in AMPK expression or activity, as determined by immunoblotting for phosphorylation and expression of AMPKα and its downstream target acetyl-CoA carboxylase (ACC). These responses elicited by AMPK activation singly or in combination with dexamethasone did not extend to the mRNA expression of the UBR box family E3s UBR1/E3αI and UBR2/E3αII. Treatment with the AMPK inhibitor compound C prevented increases in MAFbx and MuRF1 mRNA in response to serum deprivation, as well as AICAR and dexamethasone treatment individually or jointly. Stimulation of AMPK activity in vivo via AICAR injection increased both MAFbx and MuRF1 mRNA in murine skeletal muscle. These data suggest that activation of AMPK in skeletal muscle results in a specific upregulation of MAFbx and MuRF1, responses that are reminiscent of the proposed atrophic transcriptional program executed under various conditions of skeletal muscle wasting. Therefore, AMPK may be a critical component of the intercalated network of signaling pathways governing skeletal muscle atrophy, where its input acts to modify anti- and proatrophic signals to influence gene expression in reaction to catabolic perturbations.


2018 ◽  
Vol 315 (5) ◽  
pp. C609-C622 ◽  
Author(s):  
Avisek Majumder ◽  
Mahavir Singh ◽  
Jyotirmaya Behera ◽  
Nicholas T. Theilen ◽  
Akash K. George ◽  
...  

Although hyperhomocysteinemia (HHcy) occurs because of the deficiency in cystathionine-β-synthase (CBS) causing skeletal muscle dysfunction, it is still unclear whether this effect is mediated through oxidative stress, endoplasmic reticulum (ER) stress, or both. Nevertheless, there is no treatment option available to improve HHcy-mediated muscle injury. Hydrogen sulfide (H2S) is an antioxidant compound, and patients with CBS mutation do not produce H2S. In this study, we hypothesized that H2S mitigates HHcy-induced redox imbalance/ER stress during skeletal muscle atrophy via JNK phosphorylation. We used CBS+/−mice to study HHcy-mediated muscle atrophy, and treated them with sodium hydrogen sulfide (NaHS; an H2S donor). Proteins and mRNAs were examined by Western blots and quantitative PCR. Proinflammatory cytokines were also measured. Muscle mass and strength were studied via fatigue susceptibility test. Our data revealed that HHcy was detrimental to skeletal mass, particularly gastrocnemius and quadriceps muscle weight. We noticed that oxidative stress was reversed by NaHS in homocysteine (Hcy)-treated C2C12 cells. Interestingly, ER stress markers (GRP78, ATF6, pIRE1α, and pJNK) were elevated in vivo and in vitro, and NaHS mitigated these effects. Additionally, we observed that JNK phosphorylation was upregulated in C2C12 after Hcy treatment, but NaHS could not reduce this effect. Furthermore, inflammatory cytokines IL-6 and TNF-α were higher in plasma from CBS as compared with wild-type mice. FOXO1-mediated Atrogin-1 and MuRF-1 upregulation were attenuated by NaHS. Functional studies revealed that NaHS administration improved muscle fatigability in CBS+/−mice. In conclusion, our work provides evidence that NaHS is beneficial in mitigating HHcy-mediated skeletal injury incited by oxidative/ER stress responses.


Author(s):  
Ziqiu HAN ◽  
Cen CHANG ◽  
Weiyi ZHU ◽  
Yanlei ZHANG ◽  
Jing ZHENG ◽  
...  

The proteolytic autophagy system is involved in a major regulatory pathway in dexamethasone (Dex)-induced muscle atrophy. Sirtuin 2 (SIRT2) is known to participate in modulating autophagy signaling, exerting effects in skeletal muscle atrophy. We aimed to determine the effects of SIRT2 on autophagy in Dex-induced myoatrophy. Mice were randomly divided into the normal, Dex, and sirtinol groups. C2C12 cells were differentiated into myotubes and transfected with short hairpin (sh)-Sirt2-green fluorescent protein (GFP) or Sirt2-GFP lentivirus. To evaluate the mass and function of skeletal muscles, we measured the myofiber cross-sectional area, myotube size, gastrocnemius muscle wet weight/body weight ratio (%), and time-to-exhaustion. The SIRT2, myosin heavy chain (MyHC), LC3, and Beclin-1 expression levels were detected by western blotting and quantitative reverse transcription-polymerase chain reaction. Inhibition of SIRT2 markedly attenuated the muscle mass and endurance capacity. The same phenotype was observed in Sirt2-shRNA-treated myotubes, as evidenced by their decreased size. Conversely, SIRT2 overexpression alleviated Dex-induced myoatrophy in vitro. Moreover, SIRT2 negatively regulated the expression of the LC3b and Beclin-1 in skeletal muscles. These findings suggested that SIRT2 activation protects myotubes against Dex-induced atrophy through the inhibition of the autophagy system; this phenomenon may potentially serve as a target for treating glucocorticoid-induced myopathy.


2020 ◽  
Vol 21 (3) ◽  
pp. 1167 ◽  
Author(s):  
Javier Aravena ◽  
Johanna Abrigo ◽  
Francisco Gonzalez ◽  
Francisco Aguirre ◽  
Andrea Gonzalez ◽  
...  

Myostatin is a myokine that regulates muscle function and mass, producing muscle atrophy. Myostatin induces the degradation of myofibrillar proteins, such as myosin heavy chain or troponin. The main pathway that mediates protein degradation during muscle atrophy is the ubiquitin proteasome system, by increasing the expression of atrogin-1 and MuRF-1. In addition, myostatin activates the NF-κB signaling pathway. Renin–angiotensin system (RAS) also regulates muscle mass. Angiotensin (1-7) (Ang-(1-7)) has anti-atrophic properties in skeletal muscle. In this paper, we evaluated the effect of Ang-(1-7) on muscle atrophy and signaling induced by myostatin. The results show that Ang-(1-7) prevented the decrease of the myotube diameter and myofibrillar protein levels induced by myostatin. Ang-(1-7) also abolished the increase of myostatin-induced reactive oxygen species production, atrogin-1, MuRF-1, and TNF-α gene expressions and NF-κB signaling activation. Ang-(1-7) inhibited the activity mediated by myostatin through Mas receptor, as is demonstrated by the loss of all Ang-(1-7)-induced effects when the Mas receptor antagonist A779 was used. Our results show that the effects of Ang-(1-7) on the myostatin-dependent muscle atrophy and signaling are blocked by MK-2206, an inhibitor of Akt/PKB. Together, these data indicate that Ang-(1-7) inhibited muscle atrophy and signaling induced by myostatin through a mechanism dependent on Mas receptor and Akt/PKB.


2016 ◽  
Vol 40 (1-2) ◽  
pp. 27-38 ◽  
Author(s):  
Johanna Ábrigo ◽  
Felipe Simon ◽  
Daniel Cabrera ◽  
Claudio Cabello-Verrugio

Background: Transforming growth factor type beta 1 (TGF-β1) produces skeletal muscle atrophy. Angiotensin-(1-7) (Ang-(1-7)), through the Mas receptor, prevents the skeletal muscle atrophy induced by sepsis, immobilization, or angiotensin II (Ang-II). However, the effect of Ang-(1-7) on muscle wasting induced by TGF-β1 is unknown. Aim: To evaluate whether Ang-(1-7)/Mas receptor axis could prevent the skeletal muscle atrophy induced by TGF-β1. Methods: This study assessed the atrophic effect of TGF-β1 in C2C12 myotubes and mice in absence or presence of Ang-(1-7), and the receptor participation using A779, an antagonist of the Mas receptor. The levels of myosin heavy chain (MHC), polyubiquitination, and MuRF-1 were detected by western blot. Myotube diameter was also evaluated. In vivo analysis included the muscle strength, fibre diameter, MHC and MuRF-1 levels by western blot, and ROS levels by DCF probe detection. Results: The results showed that Ang-(1-7) prevented the increase in MuRF-1 and polyubiquitined protein levels, the decrease of MHC levels, the myotubes/fibre diameter diminution, and the increased production of reactive oxygen species (ROS) induced by TGF-β1. Utilizing A779 inhibited the anti-atrophic effect of Ang-(1-7). Conclusion: The preventive effect of Ang-(1-7) on skeletal muscle atrophy induced by TGF-β1 is produced through inhibition of ROS production and proteasomal degradation of MHC.


2018 ◽  
Vol 1 (3) ◽  
Author(s):  
Tatiana Nemirovskaya ◽  
Svetlana Belova ◽  
Boris Shenkman ◽  
Ekaterina Mochalova

Objective Unloading causes rapid skeletal muscle atrophy mainly due to the increased protein degradation. Muscle proteolysis results from the activation of ubiquitin-proteasome systems. The ubiquitination proteins are carried out by muscle-specific E3 ubiquitin ligases – MuRF-1 and MAFbx. It is known that MuRF-1 and MAFbx expression significantly increases on the third day of muscle unloading. We tested the hypothesis that p38 MAPK participates in the regulation of E3 ligases expression and the development of skeletal muscle atrophy during unloading. To check this idea we inhibited p38 MAPK by VX-745. Methods 21 male Wistar rats were divided into 3 groups (7 rats in each group): intact control (C), rats suspended for 3 days (HS) and rats suspended and injected i.p. with VX-745 (10 mg/kg/day) (VX). The hindlimb suspension was carried out according to Morey-Holton technique. The animals were anaesthetised with an i.p. injection of tribromoethanol (240 mg/kg). Under anesthesia, the m.soleus were excised, frozen in liquid nitrogen, and stored at -80°C until further analysis. All procedures with the animals were approved by the Biomedicine Ethics Committee of the Institute of Biomedical Problems of the Russian Academy of Sciences/Physiology section of the Russian Bioethics Committee. The statistical analysis was performed using the REST 2009 v.2.0.12 and Origin Pro programs at the significance level set at 0,05. The results are given as median in percent and interquartile range (0.25-0.75). Results The muscle weight in HS group was significantly reduced (72,3±2,5 mg) compared to C (83,0±3 mg), p<0.05, while the soleus weight of VX group didn’t differ from the control (84.2±5 mg). The MuRF1 mRNA expression was elevated dramatically in HS group (165 (138-210) %) when compared with the control (100 (64.6-112.5) %), p<0.05.  In the VX group the level of MuRF1 mRNA expression (127 (105-138) %) didn’t differ from the control group. The MAFbx mRNA expression was observed to increase equally in both suspended groups (294 (265-342) % and (271 (239-309) %).) vs C (100 (91-106) %) so, VX-745 administration did not have any significant effect on its expression. We also found that the level of ubiquitin mRNA expression in the soleus of HS rats was higher (423 (325-485) %) in comparison with the C group (100 (78-166) %, p<0.05) while VX-745 injection prevented increasing the  mRNA ubiquitin expression (200 (190-237) %). We discovered that the elevation of calpain-1 mRNA expression upon HS was prevented by VX-745 administration and its level didn’t differ from the control group (C - 100 (97-105) %, HS – 120 (116-133) %, VX - 107 (100-115) %, p<0.05). Conclusions Thus, the results indicate that the p38 MAPK signaling pathway takes part in the regulation of E3-ligase MuRF1 but not MAFbx expression. The p38 MAPK inhibition prevents muscle atrophy and the elevation of ubiquitin and calpain mRNA expression at the early stage of hindlimb unloading. This work was supported by RFBR grant No.17-04-01838.


Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 978 ◽  
Author(s):  
Soranobu Ninomiya ◽  
Nobuhiko Nakamura ◽  
Hiroshi Nakamura ◽  
Taku Mizutani ◽  
Yuto Kaneda ◽  
...  

Sarcopenia is a poor prognosis factor in some cancer patients, but little is known about the mechanisms by which malignant tumors cause skeletal muscle atrophy. Tryptophan metabolism mediated by indoleamine 2,3-dioxygenase is one of the most important amino acid changes associated with cancer progression. Herein, we demonstrate the relationship between skeletal muscles and low levels of tryptophan. A positive correlation was observed between the volume of skeletal muscles and serum tryptophan levels in patients with diffuse large B-cell lymphoma. Low levels of tryptophan reduced C2C12 myoblast cell proliferation and differentiation. Fiber diameters in the tibialis anterior of C57BL/6 mice fed a tryptophan-deficient diet were smaller than those in mice fed a standard diet. Metabolomics analysis revealed that tryptophan-deficient diet downregulated glycolysis in the gastrocnemius and upregulated the concentrations of amino acids associated with the tricarboxylic acid cycle. The weights and muscle fiber diameters of mice fed the tryptophan-deficient diet recovered after switching to the standard diet. Our data showed a critical role for tryptophan in regulating skeletal muscle mass. Thus, the tryptophan metabolism pathway may be a promising target for preventing or treating skeletal muscle atrophies.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3267 ◽  
Author(s):  
Chun Chen ◽  
Jai-Sing Yang ◽  
Chi-Cheng Lu ◽  
Yu-Jen Chiu ◽  
Hung-Che Chen ◽  
...  

Glucocorticoids are widely used anti-inflammatory drugs in clinical settings. However, they can induce skeletal muscle atrophy by reducing fiber cross-sectional area and myofibrillar protein content. Studies have proven that antioxidants can improve glucocorticoid-induced skeletal muscle atrophy. Quercetin is a potent antioxidant flavonoid widely distributed in fruits and vegetables and has shown protective effects against dexamethasone-induced skeletal muscle atrophy. In this study, we demonstrated that dexamethasone significantly inhibited cell growth and induced cell apoptosis by stimulating hydroxyl free radical production in C2C12 skeletal muscle cells. Our results evidenced that quercetin increased C2C12 skeletal cell viability and exerted antiapoptotic effects on dexamethasone-treated C2C12 cells by regulating mitochondrial membrane potential (ΔΨm) and reducing oxidative species. Quercetin can protect against dexamethasone-induced muscle atrophy by regulating the Bax/Bcl-2 ratio at the protein level and abnormal ΔΨm, which leads to the suppression of apoptosis.


Sign in / Sign up

Export Citation Format

Share Document