scholarly journals Patient-Derived Organoids as a Model for Cancer Drug Discovery

2021 ◽  
Vol 22 (7) ◽  
pp. 3483
Author(s):  
Colin Rae ◽  
Francesco Amato ◽  
Chiara Braconi

In the search for the ideal model of tumours, the use of three-dimensional in vitro models is advancing rapidly. These are intended to mimic the in vivo properties of the tumours which affect cancer development, progression and drug sensitivity, and take into account cell–cell interactions, adhesion and invasiveness. Importantly, it is hoped that successful recapitulation of the structure and function of the tissue will predict patient response, permitting the development of personalized therapy in a timely manner applicable to the clinic. Furthermore, the use of co-culture systems will allow the role of the tumour microenvironment and tissue–tissue interactions to be taken into account and should lead to more accurate predictions of tumour development and responses to drugs. In this review, the relative merits and limitations of patient-derived organoids will be discussed compared to other in vitro and ex vivo cancer models. We will focus on their use as models for drug testing and personalized therapy and how these may be improved. Developments in technology will also be considered, including the use of microfluidics, 3D bioprinting, cryopreservation and circulating tumour cell-derived organoids. These have the potential to enhance the consistency, accessibility and availability of these models.

Author(s):  
Cristina Di Giorgio ◽  
Rosalinda Roselli ◽  
Michele Biagioli ◽  
Silvia Marchianò ◽  
Eleonora Distrutti ◽  
...  

Abstract: Advancements in stem cell research have enabled the establishment of three-dimensional (3D) primary cell cultures, known as organoids. These culture systems follow the organization of an in vivo organ, as they enclose the different epithelial cell lines of which it is normally composed. Generation of these 3D cultures has bridged the gap between in vitro models, made up by two-dimensional (2D) cancer cell lines cultures, and in vivo animal models, that have major differences with human diseases. Organoids are increasingly used as a model to study colonization of gastric mucosa by infectious agents and to better understand host-microbe interactions and the molecular events that lead to infection, pathogen-epithelial cells interactions and mechanisms of gastric mucosal injury. In this review we will focus on the role of organoids as a tool to investigate molecular interactions of Helicobacter (H.) pylori and Epstein Barr Virus (EBV) and gastric mucosa and how these infections, that affect ≈ 45% of the world population, might progress to gastric cancer, a highly prevalent cancer and the third leading cause of cancer death.


2021 ◽  
Vol 22 (2) ◽  
pp. 830
Author(s):  
Georgia Pennarossa ◽  
Sharon Arcuri ◽  
Teresina De Iorio ◽  
Fulvio Gandolfi ◽  
Tiziana A. L. Brevini

Bi-dimensional culture systems have represented the most used method to study cell biology outside the body for over a century. Although they convey useful information, such systems may lose tissue-specific architecture, biomechanical effectors, and biochemical cues deriving from the native extracellular matrix, with significant alterations in several cellular functions and processes. Notably, the introduction of three-dimensional (3D) platforms that are able to re-create in vitro the structures of the native tissue, have overcome some of these issues, since they better mimic the in vivo milieu and reduce the gap between the cell culture ambient and the tissue environment. 3D culture systems are currently used in a broad range of studies, from cancer and stem cell biology, to drug testing and discovery. Here, we describe the mechanisms used by cells to perceive and respond to biomechanical cues and the main signaling pathways involved. We provide an overall perspective of the most recent 3D technologies. Given the breadth of the subject, we concentrate on the use of hydrogels, bioreactors, 3D printing and bioprinting, nanofiber-based scaffolds, and preparation of a decellularized bio-matrix. In addition, we report the possibility to combine the use of 3D cultures with functionalized nanoparticles to obtain highly predictive in vitro models for use in the nanomedicine field.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 884
Author(s):  
Marta Cherubini ◽  
Scott Erickson ◽  
Kristina Haase

Acting as the primary link between mother and fetus, the placenta is involved in regulating nutrient, oxygen, and waste exchange; thus, healthy placental development is crucial for a successful pregnancy. In line with the increasing demands of the fetus, the placenta evolves throughout pregnancy, making it a particularly difficult organ to study. Research into placental development and dysfunction poses a unique scientific challenge due to ethical constraints and the differences in morphology and function that exist between species. Recently, there have been increased efforts towards generating in vitro models of the human placenta. Advancements in the differentiation of human induced pluripotent stem cells (hiPSCs), microfluidics, and bioprinting have each contributed to the development of new models, which can be designed to closely match physiological in vivo conditions. By including relevant placental cell types and control over the microenvironment, these new in vitro models promise to reveal clues to the pathogenesis of placental dysfunction and facilitate drug testing across the maternal–fetal interface. In this minireview, we aim to highlight current in vitro placental models and their applications in the study of disease and discuss future avenues for these in vitro models.


Author(s):  
Lauren Marshall ◽  
Isabel Löwstedt ◽  
Paul Gatenholm ◽  
Joel Berry

The objective of this study was to create 3D engineered tissue models to accelerate identification of safe and efficacious breast cancer drug therapies. It is expected that this platform will dramatically reduce the time and costs associated with development and regulatory approval of anti-cancer therapies, currently a multi-billion dollar endeavor [1]. Existing two-dimensional (2D) in vitro and in vivo animal studies required for identification of effective cancer therapies account for much of the high costs of anti-cancer medications and health insurance premiums borne by patients, many of whom cannot afford it. An emerging paradigm in pharmaceutical drug development is the use of three-dimensional (3D) cell/biomaterial models that will accurately screen novel therapeutic compounds, repurpose existing compounds and terminate ineffective ones. In particular, identification of effective chemotherapies for breast cancer are anticipated to occur more quickly in 3D in vitro models than 2D in vitro environments and in vivo animal models, neither of which accurately mimic natural human tumor environments [2]. Moreover, these 3D models can be multi-cellular and designed with extracellular matrix (ECM) function and mechanical properties similar to that of natural in vivo cancer environments [3].


2012 ◽  
Vol 9 (77) ◽  
pp. 3288-3302 ◽  
Author(s):  
Neha Arya ◽  
Viren Sardana ◽  
Meera Saxena ◽  
Annapoorni Rangarajan ◽  
Dhirendra S. Katti

Owing to the reduced co-relationship between conventional flat Petri dish culture (two-dimensional) and the tumour microenvironment, there has been a shift towards three-dimensional culture systems that show an improved analogy to the same. In this work, an extracellular matrix (ECM)-mimicking three-dimensional scaffold based on chitosan and gelatin was fabricated and explored for its potential as a tumour model for lung cancer. It was demonstrated that the chitosan–gelatin (CG) scaffolds supported the formation of tumoroids that were similar to tumours grown in vivo for factors involved in tumour-cell–ECM interaction, invasion and metastasis, and response to anti-cancer drugs. On the other hand, the two-dimensional Petri dish surfaces did not demonstrate gene-expression profiles similar to tumours grown in vivo . Further, the three-dimensional CG scaffolds supported the formation of tumoroids, using other types of cancer cells such as breast, cervix and bone, indicating a possible wider potential for in vitro tumoroid generation. Overall, the results demonstrated that CG scaffolds can be an improved in vitro tool to study cancer progression and drug screening for solid tumours.


2020 ◽  
Vol 122 (6) ◽  
pp. 735-744 ◽  
Author(s):  
Ian R. Powley ◽  
Meeta Patel ◽  
Gareth Miles ◽  
Howard Pringle ◽  
Lynne Howells ◽  
...  

AbstractPreclinical models that can accurately predict outcomes in the clinic are much sought after in the field of cancer drug discovery and development. Existing models such as organoids and patient-derived xenografts have many advantages, but they suffer from the drawback of not contextually preserving human tumour architecture. This is a particular problem for the preclinical testing of immunotherapies, as these agents require an intact tumour human-specific microenvironment for them to be effective. In this review, we explore the potential of patient-derived explants (PDEs) for fulfilling this need. PDEs involve the ex vivo culture of fragments of freshly resected human tumours that retain the histological features of original tumours. PDE methodology for anti-cancer drug testing has been in existence for many years, but the platform has not been widely adopted in translational research facilities, despite strong evidence for its clinical predictivity. By modifying PDE endpoint analysis to include the spatial profiling of key biomarkers by using multispectral imaging, we argue that PDEs offer many advantages, including the ability to correlate drug responses with tumour pathology, tumour heterogeneity and changes in the tumour microenvironment. As such, PDEs are a powerful model of choice for cancer drug and biomarker discovery programmes.


2019 ◽  
Vol 6 (3) ◽  
pp. 59 ◽  
Author(s):  
Shicheng Ye ◽  
Jochem W.B. Boeter ◽  
Louis C. Penning ◽  
Bart Spee ◽  
Kerstin Schneeberger

Bioengineered livers are promising in vitro models for drug testing, toxicological studies, and as disease models, and might in the future be an alternative for donor organs to treat end-stage liver diseases. Liver tissue engineering (LTE) aims to construct liver models that are physiologically relevant. To make bioengineered livers, the two most important ingredients are hepatic cells and supportive materials such as hydrogels. In the past decades, dozens of hydrogels have been developed to act as supportive materials, and some have been used for in vitro models and formed functional liver constructs. However, currently none of the used hydrogels are suitable for in vivo transplantation. Here, the histology of the human liver and its relationship with LTE is introduced. After that, significant characteristics of hydrogels are described focusing on LTE. Then, both natural and synthetic materials utilized in hydrogels for LTE are reviewed individually. Finally, a conclusion is drawn on a comparison of the different hydrogels and their characteristics and ideal hydrogels are proposed to promote LTE.


Author(s):  
Leonie Rouleau ◽  
Joanna Rossi ◽  
Jean-Claude Tardif ◽  
Rosaire Mongrain ◽  
Richard L. Leask

Endothelial cells (ECs) are believed to respond differentially to hemodynamic forces in the vascular tree. Once atherosclerotic plaque has formed in a vessel, the obstruction creates complex spatial gradients in wall shear stress (WSS). In vitro models have used mostly unrealistic and simplified geometries, which cannot reproduce accurately physiological conditions. The objective of this study was to expose ECs to the complex WSS pattern created by an asymmetric stenosis. Endothelial cells were grown and exposed for different times to physiological steady flows in straight dynamic controls and in idealized asymmetric stenosis models. Cell morphology was noticeably different in the regions with spatial WSS gradients, being more randomly oriented and of cobblestone shape. Inflammatory molecule expression was also altered by exposure to shear and endothelial nitric oxide synthase (eNOS) was upregulated by its presence. A regional response in terms of inflammation was observed through confocal microscopy. This work provides a more realistic model to study endothelial cell response to spatial and temporal WSS gradients that are present in vivo and is an important advancement towards a better understanding of the mechanisms involved in coronary artery disease.


2017 ◽  
Vol 204 (3-4) ◽  
pp. 191-198 ◽  
Author(s):  
Gemma A. Figtree ◽  
Kristen J. Bubb ◽  
Owen Tang ◽  
Eddy Kizana ◽  
Carmine Gentile

Spheroid cultures are among the most explored cellular biomaterials used in cardiovascular research, due to their improved integration of biochemical and physiological features of the heart in a defined architectural three-dimensional microenvironment when compared to monolayer cultures. To further explore the potential use of spheroid cultures for research, we engineered a novel in vitro model of the heart with vascularized cardiac spheroids (VCSs), by coculturing cardiac myocytes, endothelial cells, and fibroblasts isolated from dissociated rat neonatal hearts (aged 1-3 days) in hanging drop cultures. To evaluate the validity of VCSs in recapitulating pathophysiological processes typical of the in vivo heart, such as cardiac fibrosis, we then treated VCSs with transforming growth factor beta 1 (TGFβ1), a known profibrotic agent. Our mRNA analysis demonstrated that TGFβ1-treated VCSs present elevated levels of expression of connective tissue growth factor, fibronectin, and TGFβ1 when compared to control cultures. We demonstrated a dramatic increase in collagen deposition following TGFβ1 treatment in VCSs in the PicroSirius Red-stained sections. Doxorubicin, a renowned cardiotoxic and profibrotic agent, triggered apoptosis and disrupted vascular networks in VCSs. Taken together, our findings demonstrate that VCSs are a valid model for the study of the mechanisms involved in cardiac fibrosis, with the potential to be used to investigate novel mechanisms and therapeutics for treating and preventing cardiac fibrosis in vitro.


2020 ◽  
Author(s):  
Yuxun Wang ◽  
Heping Yang ◽  
Huanping Li ◽  
Shuda Zhao ◽  
Yikun Zeng ◽  
...  

ABSTRACTToll-like receptors (TLRs) are a family of proteins that recognize pathogen associated molecular patterns (PAMPs). Their primary function is to activate innate immune responses while also involved in facilitating adaptive immune responses. Different TLRs exert distinct functions by activating varied immune cascades. Several TLRs are being pursued as cancer drug targets. We discovered a novel, highly potent and selective small molecule TLR8 agonist DN052. DN052 exhibited strong in vitro cellular activity with EC50 at 6.7 nM and was highly selective for TLR8 over other TLRs including TLR4, 7 and 9. The selectivity profile distinguished DN052 from all other TLR agonists currently in clinical development. DN052 displayed excellent in vitro ADMET and in vivo PK profiles. DN052 potently inhibited tumor growth as a single agent. Moreover, combination of DN052 with the immune checkpoint inhibitor, selected targeted therapeutics or chemotherapeutic drugs further enhanced efficacy of single agents. Mechanistically, treatment with DN052 resulted in strong induction of pro-inflammatory cytokines in ex vivo human PBMC assay and in vivo monkey study. GLP toxicity studies in rats and monkeys demonstrated favorable safety profile. This led to the advancement of DN052 into phase I clinical trials.


Sign in / Sign up

Export Citation Format

Share Document