scholarly journals Involvement of Autophagy in Rat Tail Static Compression-Induced Intervertebral Disc Degeneration and Notochordal Cell Disappearance

2021 ◽  
Vol 22 (11) ◽  
pp. 5648
Author(s):  
Takashi Yurube ◽  
Hiroaki Hirata ◽  
Masaaki Ito ◽  
Yoshiki Terashima ◽  
Yuji Kakiuchi ◽  
...  

The intervertebral disc is the largest avascular low-nutrient organ in the body. Thus, resident cells may utilize autophagy, a stress-response survival mechanism, by self-digesting and recycling damaged components. Our objective was to elucidate the involvement of autophagy in rat experimental disc degeneration. In vitro, the comparison between human and rat disc nucleus pulposus (NP) and annulus fibrosus (AF) cells found increased autophagic flux under serum deprivation rather in humans than in rats and in NP cells than in AF cells of rats (n = 6). In vivo, time-course Western blotting showed more distinct basal autophagy in rat tail disc NP tissues than in AF tissues; however, both decreased under sustained static compression (n = 24). Then, immunohistochemistry displayed abundant autophagy-related protein expression in large vacuolated disc NP notochordal cells of sham rats. Under temporary static compression (n = 18), multi-color immunofluorescence further identified rapidly decreased brachyury-positive notochordal cells with robust expression of autophagic microtubule-associated protein 1 light chain 3 (LC3) and transiently increased brachyury-negative non-notochordal cells with weaker LC3 expression. Notably, terminal deoxynucleotidyl transferase dUTP nick end labeling-positive apoptotic death was predominant in brachyury-negative non-notochordal cells. Based on the observed notochordal cell autophagy impairment and non-notochordal cell apoptosis induction under unphysiological mechanical loading, further investigation is warranted to clarify possible autophagy-induced protection against notochordal cell disappearance, the earliest sign of disc degeneration, through limiting apoptosis.

2018 ◽  
Vol 24 ◽  
pp. 6456-6465 ◽  
Author(s):  
Tao Chen ◽  
Xiaofei Cheng ◽  
Jingcheng Wang ◽  
Xinmin Feng ◽  
Liang Zhang

Spine ◽  
2017 ◽  
Vol 42 (8) ◽  
pp. E448-E458 ◽  
Author(s):  
ZhanJun Yan ◽  
YouDong Pan ◽  
ShiHui Wang ◽  
MaoHua Cheng ◽  
HongMei Kong ◽  
...  

Author(s):  
A Lai ◽  
D H K Chow ◽  
W-S Siu ◽  
A D Holmes ◽  
F-H Tang ◽  
...  

Electroacupuncture (EA) has long been used as conservative treatment for low back pain (LBP). Its effect on relief of back pain has been demonstrated in many clinical studies. However, whether it has any effect on the biological properties of an intervertebral disc, which is one of the major causes of LBP, is still unclear. The aim of this study was, therefore, to investigate the effects of EA with different simulation frequencies on an intervertebral disc with simulated degeneration using an in-vivo rat-tail model. In this study, 33 rats were used. Disc degeneration was simulated in the rat caudal 8—9 disc via continuous static compressive loading of 11 N for 2 weeks. EA with a frequency of 2 or 100 Hz was then applied to the degenerated disc for 3 weeks with 3 sessions/week and 20 min/session. The intervertebral disc height was measured before and after compression as well as after EA intervention for 3 weeks. The static compression was found to result in a reduction in the disc height of about 22 per cent. There was no evidence that this change could be reversed after resting or the EA intervention. However, EA at 100 Hz was found to induce a further decrease in disc height, which was not shown for the rats after resting or EA at 2 Hz. The results of this study showed that effects of EA on disc degeneration are frequency dependent and adverse effects could result if EA at a certain frequency was used.


2014 ◽  
Vol 16 (1) ◽  
pp. R31 ◽  
Author(s):  
Takashi Yurube ◽  
Hiroaki Hirata ◽  
Kenichiro Kakutani ◽  
Koichiro Maeno ◽  
Toru Takada ◽  
...  

Life Sciences ◽  
2016 ◽  
Vol 156 ◽  
pp. 15-20 ◽  
Author(s):  
Chia-Hsian Chen ◽  
Chang-Jung Chiang ◽  
Lien-Chen Wu ◽  
Chih-Hong Yang ◽  
Yi-Jie Kuo ◽  
...  

2017 ◽  
Vol 54 (6) ◽  
pp. 945-952 ◽  
Author(s):  
Tove Hansen ◽  
Lucas A. Smolders ◽  
Marianna A. Tryfonidou ◽  
Björn P. Meij ◽  
Johannes C. M. Vernooij ◽  
...  

Since the seminal work by Hans-Jörgen Hansen in 1952, it has been assumed that intervertebral disc (IVD) degeneration in chondrodystrophic (CD) dogs involves chondroid metaplasia of the nucleus pulposus, whereas in nonchondrodystrophic (NCD) dogs, fibrous metaplasia occurs. However, more recent studies suggest that IVD degeneration in NCD and CD dogs is more similar than originally thought. Therefore, the aim of this study was to compare the histopathology of IVD degeneration in CD and NCD dogs. IVDs with various grades of degeneration (Thompson grade I–III, n = 7 per grade) from both CD and NCD dogs were used (14 CD and 18 NCD dogs, 42 IVDs in total). Sections were scored according to a histological scoring scheme for canine IVD degeneration, including evaluation of the presence of fibrocyte-like cells in the nucleus pulposus. In CD dogs, the macroscopically non-degenerated nucleus pulposus contained mainly chondrocyte-like cells, whereas the non-degenerated nucleus pulposus of NCD dogs mainly contained notochordal cells. The histopathological changes in degenerated discs were similar in CD and NCD dogs and resembled chondroid metaplasia. Fibrocytes were not seen in the nucleus pulposus, indicating that fibrous degeneration of the IVD was not present in any of the evaluated grades of degeneration. In conclusion, intervertebral disc degeneration was characterized by chondroid metaplasia of the nucleus pulposus in both NCD and CD dogs. These results revoke the generally accepted concept that NCD and CD dogs suffer from a different type of IVD degeneration, in veterinary literature often referred to as chondroid or fibroid degeneration, and we suggest that chondroid metaplasia should be used to describe the tissue changes in the IVD in both breed types.


Sign in / Sign up

Export Citation Format

Share Document