scholarly journals High-Density Genetic Map Construction and Identification of QTLs Controlling Leaf Abscission Trait in Poncirus trifoliata

2021 ◽  
Vol 22 (11) ◽  
pp. 5723
Author(s):  
Yuan-Yuan Xu ◽  
Sheng-Rui Liu ◽  
Zhi-Meng Gan ◽  
Ren-Fang Zeng ◽  
Jin-Zhi Zhang ◽  
...  

A high-density genetic linkage map is essential for genetic and genomic studies including QTL mapping, genome assembly, and comparative genomic analysis. Here, we constructed a citrus high-density linkage map using SSR and SNP markers, which are evenly distributed across the citrus genome. The integrated linkage map contains 4163 markers with an average distance of 1.12 cM. The female and male linkage maps contain 1478 and 2976 markers with genetic lengths of 1093.90 cM and 1227.03 cM, respectively. Meanwhile, a genetic map comparison demonstrates that the linear order of common markers is highly conserved between the clementine mandarin and Poncirus trifoliata. Based on this high-density integrated citrus genetic map and two years of deciduous phenotypic data, two loci conferring leaf abscission phenotypic variation were detected on scaffold 1 (including 36 genes) and scaffold 8 (including 107 genes) using association analysis. Moreover, the expression patterns of 30 candidate genes were investigated under cold stress conditions because cold temperature is closely linked with the deciduous trait. The developed high-density genetic map will facilitate QTL mapping and genomic studies, and the localization of the leaf abscission deciduous trait will be valuable for understanding the mechanism of this deciduous trait and citrus breeding.

2020 ◽  
Author(s):  
Fazal Rehman ◽  
Haiguang Gong ◽  
Zhong Li ◽  
Shaohua Zeng ◽  
Tianshun Yang ◽  
...  

Abstract Background: Goji (Lycium spp., 2n = 24) is a perennial woody plant bearing functional properties. Fruit size associated attributes are important for evaluating small-fruited goji berry and plant architecture. The domestication traits are regulated quantitatively in crop plants but fewer studies have attempted on genomic regions corresponding to the fruit traits.Results: In this study, we established high-resolution map using SLAF-seq for de novo SNPs detection, based on 305 F1 offspring derived from L. chinense and L. barbarum. This genetic map contained 3,495 SNP markers on 12 LGs, spanning 1,649.03 cM with 0.47 cM average interval. Female and male parents had sequencing depth of 72.43-fold and 60.43-fold, respectively, while 15.23-fold detected for individuals. Phenotype data were obtained for 2 years and included 3rd year data as an average. QTL mapping analysis resulted in 117 QTLs corresponding to all traits, of which 23 QTLs in 2 years and 6 QTLs in 3rd years were detected. 6 promising QTLs, qFW10-3.1, qFL10-2.1, qLL10-2.1, qLD10-2.1, qLD12-4.1 and qLA10-2.1 were discovered influencing fruit weight, fruit length and leaf size related attributes covering an interval ranged 13.74-76.61 cM on LG10 with peak LOD up to 14.21 and PVE 19.3%. Additionally, 3 QTLs, qFS-1, qFS-2 and qFF-1, targeting fruit sweetness and fruit firmness were also identified in this study. Strikingly, among stable QTLs, qFL10-2.1, was co-localized to qLL10-2.1, qLD10-2.1, qLA10-2.1 and harbored significantly similar markers distribution, while qLL10-2.1 was the major and stable QTL with LOD ranged from 8.71-14.21 and PVE 12.3-19.3%. As LG10 harbored most of the fruit and leaf size related QTLs, we might speculate that it could be a hotspot region regulating fruit size and plant architectures.Conclusions: This report highlighted that the high-density linkage map construction using SLAF-seq is an important means for profound QTL mapping approach. Substantially, we utilized highly saturated genetic map to find out genetic locus targeting fruit and leaf size related attributes under QTL mapping. Our results will shed light on domestication traits and further strengthen molecular and genetic underpinnings of goji berry. Moreover, these findings would facilitate to assemble reference genome, determining potential candidate genes and marker-assisted breeding.


Genome ◽  
2009 ◽  
Vol 52 (8) ◽  
pp. 716-725 ◽  
Author(s):  
Andrea L. Blas ◽  
Qingyi Yu ◽  
Cuixia Chen ◽  
Olivia Veatch ◽  
Paul H. Moore ◽  
...  

A high-density genetic linkage map of papaya, previously developed using an F2 mapping population derived from the intraspecific cross AU9 × SunUp, was enriched with AFLP markers. The comprehensive genetic map presented here spans 945.2 cM and covers 9 major and 5 minor linkage groups containing 712 SSR, 277 AFLP, and 1 morphological markers. The average marker density for the 9 major linkage groups is 0.9 cM between adjacent markers, and the total number of gaps >5 cM was reduced from 48 to 27 in the current map. AFLPs generated by EcoRI/MseI primer combinations were distributed throughout the 14 linkage groups and resulted in several large locus order rearrangements within the 9 major linkage groups. Integration of AFLP markers provided tighter linkage association between loci, leading to a reduction in map distance on LGs 1, 2, and 4, which were inflated in the previous map, and correction of the marker order on LG8. Suppression of recombination in the male-specific Y region (MSY) of LG1 is further validated by the addition of 27 sex co-segregating AFLP markers. A large region of distorted segregation surrounding the MSY spans 54.4 cM and represents ∼71% of the linkage group. This comprehensive high-density genetic map provides a framework for mapping quantitative trait loci and for fine mapping as well as for comparative genomic studies of crop plant development and evolution.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Qiaomu Hu ◽  
Yang Liu ◽  
Xiaolin Liao ◽  
Haifeng Tian ◽  
Xiangshan Ji ◽  
...  

Abstract Background The Chinese giant salamander Andrias davidianus is an important amphibian species in China because of its increasing economic value, protection status and special evolutionary position from aquatic to terrestrial animal. Its large genome presents challenges to genetic research. Genetic linkage mapping is an important tool for genome assembly and determination of phenotype-related loci. Results In this study, we constructed a high-density genetic linkage map using ddRAD sequencing technology to obtain SNP genotyping data of members from an full-sib family which sex had been determined. A total of 10,896 markers were grouped and oriented into 30 linkage groups, representing 30 chromosomes of A. davidianus. The genetic length of LGs ranged from 17.61 cM (LG30) to 280.81 cM (LG1), with a mean inter-locus distance ranging from 0.11(LG3) to 0.48 cM (LG26). The total genetic map length was 2643.10 cM with an average inter-locus distance of 0.24 cM. Three sex-related loci and four sex-related markers were found on LG6 and LG23, respectively. Conclusion We constructed the first High-density genetic linkage map and identified three sex-related loci in the Chinese giant salamander. Current results are expected to be a useful tool for future genomic studies aiming at the marker-assisted breeding of the species.


2015 ◽  
Vol 41 (10) ◽  
pp. 1510 ◽  
Author(s):  
Wei-Wei QIN ◽  
Yong-Xiang LI ◽  
Chun-Hui LI ◽  
Lin CHEN ◽  
Xun WU ◽  
...  
Keyword(s):  

Euphytica ◽  
2021 ◽  
Vol 217 (8) ◽  
Author(s):  
Peng Jin ◽  
Lihua Wang ◽  
Wenjie Zhao ◽  
Jian Zheng ◽  
Yi-Hong Wang ◽  
...  

2021 ◽  
Author(s):  
Huaxing Zhou ◽  
Guoqing Duan ◽  
He Jiang ◽  
Jun Ling ◽  
Yuting Hu ◽  
...  

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Zemao Yang ◽  
Youxin Yang ◽  
Zhigang Dai ◽  
Dongwei Xie ◽  
Qing Tang ◽  
...  

Abstract Background Jute (Corchorus spp.) is the most important natural fiber crop after cotton in terms of cultivation area and production. Salt stress greatly restricts plant development and growth. A high-density genetic linkage map is the basis of quantitative trait locus (QTLs) mapping. Several high-density genetic maps and QTLs mapping related to salt tolerance have been developed through next-generation sequencing in many crop species. However, such studies are rare for jute. Only several low-density genetic maps have been constructed and no salt tolerance-related QTL has been mapped in jute to date. Results We developed a high-density genetic map with 4839 single nucleotide polymorphism markers spanning 1375.41 cM and an average distance of 0.28 cM between adjacent markers on seven linkage groups (LGs) using an F2 jute population, LGs ranged from LG2 with 299 markers spanning 113.66 cM to LG7 with 1542 markers spanning 350.18 cM. In addition, 99.57% of gaps between adjacent markers were less than 5 cM. Three obvious and 13 minor QTLs involved in salt tolerance were identified on four LGs explaining 0.58–19.61% of the phenotypic variance. The interval length of QTL mapping varied from 1.3 to 20.2 cM. The major QTL, qJST-1, was detected under two salt stress conditions that explained 11.81 and 19.61% of the phenotypic variation, respectively, and peaked at 19.3 cM on LG4. Conclusions We developed the first high-density and the most complete genetic map of jute to date using a genotyping-by-sequencing approach. The first QTL mapping related to salt tolerance was also carried out in jute. These results should provide useful resources for marker-assisted selection and transgenic breeding for salt tolerance at the germination stage in jute.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yan-Qiong Tang ◽  
Zhi-Qiang Xia ◽  
Ze-Ting Ding ◽  
Ya-Cao Ding ◽  
Zhu Liu ◽  
...  

BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Guosong Zhang ◽  
Jie Li ◽  
Jiajia Zhang ◽  
Xia Liang ◽  
Tao Wang ◽  
...  

Abstract Background A high-density genetic linkage map is essential for QTL fine mapping, comparative genome analysis, identification of candidate genes and marker-assisted selection in aquaculture species. Pelteobagrus vachelli is a very popular commercial species in Asia. However, some specific characters hindered achievement of the traditional selective breeding based on phenotypes, such as lack of large-scale genomic resource and short of markers tightly associated with growth, sex determination and hypoxia tolerance related traits. Results By making use of 5059 ddRAD markers in P. vachelli, a high-resolution genetic linkage map was successfully constructed. The map’ length was 4047.01 cM by using an interval of 0.11 cm, which is an average marker standard. Comparative genome mapping revealed that a high proportion (83.2%) of markers with a one-to-one correspondence were observed between P. vachelli and P. fulvidraco. Based on the genetic map, 8 significant genome-wide QTLs for 4 weight, 1 body proportion, 2 sex determination, and 1 hypoxia tolerance related traits were detected on 4 LGs. Some SNPs from these significant genome-wide QTLs were observably associated with these phenotypic traits in other individuals by Kompetitive Allele Specific PCR. In addition, two candidate genes for weight, Sipa1 and HSD11B2, were differentially expressed between fast-, medium- and slow-growing P. vachelli. Sema7a, associated with hypoxia tolerance, was induced after hypoxia exposure and reoxygenation. Conclusions We mapped a set of suggestive and significant QTLs as well as candidate genes for 12 growth, 1 sex determination and 1 hypoxia tolerance related traits based on a high-density genetic linkage map by making use of SNP markers for P. fulvidraco. Our results have offered a valuable method about the much more efficient production of all-male, fast growth and hypoxia tolerance P. vachelli for the aquaculture industry.


Sign in / Sign up

Export Citation Format

Share Document