scholarly journals Comparison of Gut Bacterial Communities of Grapholita molesta (Lepidoptera: Tortricidae) Reared on Different Host Plants

2021 ◽  
Vol 22 (13) ◽  
pp. 6843
Author(s):  
Xiangqun Yuan ◽  
Xuan Zhang ◽  
Xueying Liu ◽  
Yanlu Dong ◽  
Zizheng Yan ◽  
...  

Intestinal symbiotic bacteria have played an important role in the digestion, immunity detoxification, mating, and reproduction of insects during long-term coevolution. The oriental fruit moth, Grapholita molesta, is an important fruit tree pest worldwide. However, the composition of the G. molesta microbial community, especially of the gut microbiome, remains unclear. To explore the differences of gut microbiota of G. molesta when reared on different host plants, we determined the gut bacterial structure when G. molesta was transferred from an artificial diet to different host plants (apples, peaches, nectarines, crisp pears, plums, peach shoots) by amplicon sequencing technology. The results showed that Proteobacteria and Firmicutes are dominant in the gut microbiota of G. molesta. Plum-feeding G. molesta had the highest richness and diversity of gut microbiota, while apple-feeding G. molesta had the lowest. PCoA and PERMANOVA analysis revealed that there were significant differences in the gut microbiota structure of G. molesta on different diets. PICRUSt2 analysis indicated that most of the functional prediction pathways were concentrated in metabolic and cellular processes. Our results confirmed that gut bacterial communities of G. molesta can be influenced by host diets and may play an important role in host adaptation.

Author(s):  
Huiling Cao ◽  
Chunhui Zong ◽  
Wenkui Dai ◽  
Qiaoying Gao ◽  
Donghua Li ◽  
...  

Sepsis is a common and often treacherous medical emergency with a high mortality and long-term complications in survivors. Though antibiotic therapy can reduce death rate of sepsis significantly, it impairs gut microbiota (GM), which play imperative roles in human health. In this study, we compared the therapeutic effects of antibiotics, probiotics, and Chinese medicine QRD on the survival rates of septic model and observed the GM characteristics of experimental rats via 16S rRNA gene amplicon sequencing. The 72 h survival rates of septic rat demonstrated the significant therapeutic effects in the three groups treated with antibiotics (AT), Chinses medicine QRD (QT), and probiotics (PT), which were elevated from the survival rate of 26.67% for the sepsis control group (ST) to 100.0% for AT, 88.24% for QT, and 58.33% for PT. The original characteristics of GM identified in the sham operation controls (SC) were relatively similar to those in PT and QT; nevertheless, the AT rats were shown dramatically decreased in the GM diversity. In addition, the septic rats in AT were revealed the higher abundances of Escherichia Shigella, Proteus, Morganella, Enterococcus, and Lysinibacillus, but the lower those of Parabacteroides, Alistipes, Desulfovibrio, Bacteroides, Helicobacter, Mucispirillum, Oscillibacter, Lachnospiraceae, and Ruminiclostridium 9, when compared to the PT and QT rats. By contrast, the GM of PT and QT rats shared similar diversity and structure. Our findings indicated that QRD increased the survival rates without impairment of the GM characteristics, which provides novel insights into the role of Chinese medicine in therapy and long-term recovery of sepsis.


2020 ◽  
Vol 7 (6) ◽  
pp. e896
Author(s):  
Alexandre Lecomte ◽  
Lucie Barateau ◽  
Pedro Pereira ◽  
Lars Paulin ◽  
Petri Auvinen ◽  
...  

ObjectiveTo test the hypothesis that narcolepsy type 1 (NT1) is related to the gut microbiota, we compared the microbiota bacterial communities of patients with NT1 and control subjects.MethodsThirty-five patients with NT1 (51.43% women, mean age 38.29 ± 19.98 years) and 41 controls (57.14% women, mean age 36.14 ± 12.68 years) were included. Stool samples were collected, and the fecal microbiota bacterial communities were compared between patients and controls using the well-standardized 16S rRNA gene amplicon sequencing approach. We studied alpha and beta diversity and differential abundance analysis between patients and controls, and between subgroups of patients with NT1.ResultsWe found no between-group differences for alpha diversity, but we discovered in NT1 a link with NT1 disease duration. We highlighted differences in the global bacterial community structure as assessed by beta diversity metrics even after adjustments for potential confounders as body mass index (BMI), often increased in NT1. Our results revealed differential abundance of several operational taxonomic units within Bacteroidetes, Bacteroides, and Flavonifractor between patients and controls, but not after adjusting for BMI.ConclusionWe provide evidence of gut microbial community structure alterations in NT1. However, further larger and longitudinal multiomics studies are required to replicate and elucidate the relationship between the gut microbiota, immunity dysregulation and NT1.


Author(s):  
Lara Parata ◽  
Shaun Nielsen ◽  
Xing Xing ◽  
Torsten Thomas ◽  
Suhelen Egan ◽  
...  

Abstract Herbivorous fishes play important ecological roles in coral reefs by consuming algae that can otherwise outcompete corals, but we know little about the gut microbiota that facilitates this process. This study focussed on the gut microbiota of an ecologically important coral reef fish, the convict surgeonfish Acanthurus triostegus. We sought to understand how the microbiome of this species varies along its gastrointestinal tract and how it varies between juvenile and adult fish. Further, we examined if the bacteria associated with the diet consumed by juveniles contributes to the gut microbiota. 16S rRNA gene amplicon sequencing showed that bacterial communities associated with the midgut and hindgut regions were distinct between adults and juveniles, however, no significant differences were seen for gut wall samples. The microbiota associated with the epilithic algal food source was similar to that of the juvenile midgut and gut wall but differed from the microbiome of the hindgut. A core bacterial community including members of taxa Epulopiscium and Brevinemataceae was observed across all gastrointestinal and diet samples, suggesting that these bacterial symbionts can be acquired by juvenile convict surgeonfish horizontally via their diet and then are retained into adulthood.


2020 ◽  
Author(s):  
Qiang Gong ◽  
Li-Jun Cao ◽  
Jin-Cui Chen ◽  
Ya-Jun Gong ◽  
De-Qiang Pu ◽  
...  

AbstractNumerous gut microbes are associated with insects, but their composition remains largely unknown for many insect groups, along with factors influencing their composition. Here, we compared gut bacterial microbiota of two co-occurring agricultural pests, the peach fruit moth (PFM) and the oriental fruit moth (OFM), collected from different orchards and host plant species. Gut microbiota of both species was mainly composed of bacteria from Proteobacteria, followed by Firmicutes. The two species shared bacteria from the genera Pseudomonas, Gluconobacter, Acetobacter, and Pantoea, although endosymbiotic Wolbachia was the most abundant genus in PFM and Lactobacillus was the most abundant in OFM. PFM tended to have lower diversity and richness of gut microbiota than OFM; however, only some of the comparisons were statistically significant. Orchards can influence gut microbiota in terms of richness, particularly for PFM, but not so much for diversity parameters. Functional prediction of gut microbiota showed that the top pathways are amino acid metabolism, translation, and membrane transport in both species, but their abundance varied between the two moth species. These results show that two fruit moths share many features of gut microbiota, and the bacterial species are relatively stable within moth species even when they use different host plants. Our study suggests that fruit-feeding behavior may play a role in shaping gut microbiota of the two fruit moths, which may provide microbial targets for pest control.ImportanceUnderstanding the associated microbes with insects can point to new targets for pest control. Here we compared bacterial community in the gut of two co-occurring agricultural pests, the peach fruit moth (PFM) and the oriental fruit moth (OFM), collected from different orchards and host plant species. We found that the bacterial genera Pseudomonas, Gluconobacter, Acetobacter, and Pantoea are abundant and shared in two moths. The composition of the bacterial species is relatively stable within moth species even when they use different host plants, indicating that the gut microbiota community in the PFM and OFM is likely to be related to their fruit-feeding behavior. The findings have implications for developing novel pest control approaches by targeting gut microbes associated with the two moths.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lulu Yang ◽  
Ousman Bajinka ◽  
Pa Omar Jarju ◽  
Yurong Tan ◽  
Aji Mary Taal ◽  
...  

AbstractAntibiotics are lifesaving therapeutic drugs that have been used by human for decades. They are used both in the fight against bacterial pathogens for both human and for animal feeding. However, of recent, their effects on the gut microbial compositions and diversities have attracted much attention. Existing literature have established the dysbiosis (reduced diversity) in the gut microbiota in association with antibiotic and antibiotic drug doses. In the light of spelling out the varying effects of antibiotic use on gut microbiota, this review aimed at given an account on the degree of gut microbial alteration caused by common antibiotics. While some common antibiotics are found to destroy the common phyla, other debilitating effects were observed. The effects can be attributed to the mode of mechanism, the class of antibiotic, the degree of resistance of the antibiotic used, the dosage used during the treatment, the route of administration, the pharmacokinetic and pharmacodynamics properties and the spectrum of the antibiotic agent. Health status, stress or the type of diet an individual feeds on could be a great proportion as confounding factors. While it is understood that only the bacterial communities are explored in the quest to establishing the role of gut in health, other gut microbial species are somehow contributing to the dysbiosis status of the gut microbiota. Until now, long term natural fluctuations like diseases outbreaks and mutations of the strain might as well rendered alteration to the gut independent of antibiotic treatments.


Science ◽  
2013 ◽  
Vol 341 (6141) ◽  
pp. 1237439 ◽  
Author(s):  
Jeremiah J. Faith ◽  
Janaki L. Guruge ◽  
Mark Charbonneau ◽  
Sathish Subramanian ◽  
Henning Seedorf ◽  
...  

A low-error 16S ribosomal RNA amplicon sequencing method, in combination with whole-genome sequencing of >500 cultured isolates, was used to characterize bacterial strain composition in the fecal microbiota of 37 U.S. adults sampled for up to 5 years. Microbiota stability followed a power-law function, which when extrapolated suggests that most strains in an individual are residents for decades. Shared strains were recovered from family members but not from unrelated individuals. Sampling of individuals who consumed a monotonous liquid diet for up to 32 weeks indicated that changes in strain composition were better predicted by changes in weight than by differences in sampling interval. This combination of stability and responsiveness to physiologic change confirms the potential of the gut microbiota as a diagnostic tool and therapeutic target.


Author(s):  
Dong-Yu Kan ◽  
Su-Juan Li ◽  
Chen-Chen Liu ◽  
Ren-Rong Wu

Schizophrenia is a chronic and severe mental disorder with antipsychotics as primary medications, but the antipsychotic-induced metabolic side effects may contribute to the elevated risk of overall morbidity and mortality in patients with psych-iatric diseases. With the development in sequencing technology and bioinformatics, dysbiosis has been shown to contribute to body weight gain and metabolic dysfunction. However, the role of gut microbiota in the antipsychotic-induced metabolic alteration remains unknown. In this paper, we reviewed the recent studies of the gut microbiota with psychiatric disorders and antipsychotic-induced metabolic dysfunction. Patients with neuropsychiatric disorders may have a different composi-tion of gut microbiota compared with healthy controls. In addition, it seems that the use of antipsychotics is concurrently associated with both altered composition of gut microbiota and metabolic disturbance. Further study is needed to address the role of gut microbiota in the development of neuropsychiatric disorders and antipsychotic-induced metabolic disturbance, to develop novel therapeutics for both neuropsychiatric disorders and metabolic dysfunction.


2021 ◽  
Vol 309 ◽  
pp. 107285
Author(s):  
Mengyu Gao ◽  
Jinfeng Yang ◽  
Chunmei Liu ◽  
Bowen Gu ◽  
Meng Han ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document