scholarly journals Molecular Research in Cardiovascular Disease

2021 ◽  
Vol 22 (13) ◽  
pp. 7199
Author(s):  
Maria Dorobantu ◽  
Maya Simionescu ◽  
Nicoleta-Monica Popa-Fotea

Cardiovascular diseases have attracted our full attention not only because they are the main cause of mortality and morbidity in many countries but also because the therapy for and cure of these maladies are among the major challenges of the medicine in the 21st century [...]

2019 ◽  
Vol 04 (01) ◽  
pp. 015-019
Author(s):  
Lakshmi Lasya Manchikanti ◽  
Madhuri Taranikanti ◽  
Akhila Dronamraju ◽  
Sudha Bala ◽  
Rohith Kumar Guntuka

Abstract Background and Aim Menopausal women are at an increasing risk of cardiovascular diseases due to ovarian failure with estrogen deficiency. Redistribution of fat leading to abdominal obesity is a risk factor for cardiovascular disease. Dyslipidemia is one of the risk factors for peripheral artery disease (PAD) and coronary artery disease (CAD). Prevalence of PAD in women is similar or even higher than men, especially after menopause. ankle-brachial index (ABI) is a gold standard technique to diagnose PAD and acts as an independent prognostic marker to identify patients with high cardiovascular risk. This study aims to compare the ABI between pre- and postmenopausal women and to show that routine use of ABI as a screening tool can be valuable in predicting mortality and morbidity from heart diseases in peri- and postmenopausal women. Material and Methods A cross-sectional study was done on a total of 107 women with no prior medical diseases such as hypertension, diabetes mellitus, cardiovascular diseases, and history of smoking. Fifty pre- and 57 postmenopausal women were included in this study. Anthropometric parameters such as height, weight, and body mass index (BMI) were measured. ABI was calculated by measuring the systolic pressures at posterior tibial artery and brachial artery, as per the protocols using digital data acquisition system. Results BMI in postmenopausal women was significantly higher with p = 0.0023. Systolic and diastolic blood pressures were significantly higher in postmenopausal women (p = 0.000001), and ABI was found to be significantly lower in postmenopausal women particularly on the left side. Conclusion ABI serves as an efficient indicator of PAD. It becomes necessary to understand the progression of PAD as its presence can increase the risk of mortality and morbidity from CAD. Early diagnosis of cardiovascular disease through simple techniques such as ABI measurement would provide scope for early interventional strategies.


2020 ◽  
Vol 21 (23) ◽  
pp. 9285
Author(s):  
Raquel Figuinha Videira ◽  
Paula A. da Costa Martins ◽  
Inês Falcão-Pires

In 2020, cardiovascular diseases (CVDs) remain a leading cause of mortality and morbidity, contributing to the burden of the already overloaded health system. Late or incorrect diagnosis of patients with CVDs compromises treatment efficiency and patient’s outcome. Diagnosis of CVDs could be facilitated by detection of blood-based biomarkers that reliably reflect the current condition of the heart. In the last decade, non-coding RNAs (ncRNAs) present on human biofluids including serum, plasma, and blood have been reported as potential biomarkers for CVDs. This paper reviews recent studies that focus on the use of ncRNAs as biomarkers of CVDs.


2020 ◽  
Author(s):  
Zeinab Shankayi ◽  
Farideh Bahrami ◽  
Tahereh Mohammadzadeh ◽  
Amineh Ghafari Anvar ◽  
Hosein Amini ◽  
...  

Abstract Objectives There is much evidence showing that most of the mortality and morbidity cases are observed in COVID-19 patients with cardiovascular diseases. Thus, the study on COVID 19 patients with cardiovascular diseases is required for their optimum management. The present study presents a preliminary report on the cardiomegaly of laboratory and CT findings of COVID-19 pneumonia in Iran. A total of 115 Patients with COVID-19 pneumonia hospitalized in (confirmed by CT scan and RT-PCR) Baghiyatallah hospital participated in the present study. Results Thirty-three of these patients (26.8%) had cardiomegaly detected by chest CT scan. Creatinine, Urea and CRP levels of patients significantly increased based on cardiovascular disease detection. In contrast, Sodium levels reduced to below the normal in patients with cardiomegaly. Despite respiratory illness as the first symptom of COVID-19, the role of other diseases such as cardiovascular disease requires further investigation.


2011 ◽  
pp. 5-12
Author(s):  
Anh Tien Hoang ◽  
Van Minh Huynh ◽  
Khanh Hoang ◽  
Huu Dang Tran ◽  
Viet An Tran

NT-ProBNP is a high value cardiac biomarker and widely applies in many cardiovascular diseases. The evaluation of concentration of NT-ProBNP needs the concern about age, gender, obesity and especially we need each cut-off point for each cause of cardiovascular disease in evaluation and clinical application. Because NT-ProBNP is a new cardiac marker and has been researched in 5 recent years, the cut-off of NT-ProBNP is still being studied for the clinical application in cardiovascular diseases. Only the cut-off of NT-ProBNP in diagnosis heart failure was guided by European Society of Cardiology. The meaning of introduce cut-off value of value plays an role as pilot study for the other relate study and brings the NT-ProBNP closely approach to clinical application.


2020 ◽  
Vol 28 ◽  
Author(s):  
Justyna Hajtuch ◽  
Karolina Niska ◽  
Iwona Inkielewicz-Stepniak

Background: Cancer along with cardiovascular diseases are globally defined as leading causes of death. Importantly, some risk factors are common to these diseases. The process of angiogenesis and platelets aggregation are observed in cancer development and progression. In recent years, studies have been conducted on nanodrugs in these diseases that have provided important information on the biological and physicochemical properties of nanoparticles. Their attractive features are that they are made of biocompatible, well-characterized and easily functionalized materials. Unlike conventional drug delivery, sustained and controlled drug release can be obtained by using nanomaterials. Methods: In this article, we review the latest research to provide comprehensive information on nanoparticle-based drugs for the treatment of cancer, cardiovascular disease associated with abnormal haemostasis, and the inhibition of tumorassociated angiogenesis. Results: The results of the analysis of data based on nanoparticles with drugs confirm their improved pharmaceutical and biological properties, which gives promising antiplatelet, anticoagulant and antiangiogenic effects. Moreover, the review included in vitro, in vivo research and presented nanodrugs with chemotherapeutics approved by Food and Drug Administration. Conclusion: By the optimization of nanoparticles size and surface properties, nanotechnology are able to deliver drugs with enhanced bioavailability in treatment of cardiovascular disease, cancer and inhibition of cancer-related angiogenesis. Thus, nanotechnology can improve the therapeutic efficacy of the drug, but there is a need for a better understanding of the nanodrugs interaction in the human body, because this is a key factor in the success of potential nanotherapeutics.


2019 ◽  
Vol 22 (6) ◽  
pp. 411-420 ◽  
Author(s):  
Xian-Jun Wu ◽  
Xin-Bin Zhou ◽  
Chen Chen ◽  
Wei Mao

Aim and Objective: Cardiovascular disease is a serious threat to human health because of its high mortality and morbidity rates. At present, there is no effective treatment. In Southeast Asia, traditional Chinese medicine is widely used in the treatment of cardiovascular diseases. Quercetin is a flavonoid extract of Ginkgo biloba leaves. Basic experiments and clinical studies have shown that quercetin has a significant effect on the treatment of cardiovascular diseases. However, its precise mechanism is still unclear. Therefore, it is necessary to exploit the network pharmacological potential effects of quercetin on cardiovascular disease. Materials and Methods: In the present study, a novel network pharmacology strategy based on pharmacokinetic filtering, target fishing, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, compound-target-pathway network structured was performed to explore the anti- cardiovascular disease mechanism of quercetin. Results:: The outcomes showed that quercetin possesses favorable pharmacokinetic profiles, which have interactions with 47 cardiovascular disease-related targets and 12 KEGG signaling pathways to provide potential synergistic therapeutic effects. Following the construction of Compound-Target-Pathway (C-T-P) network, and the network topological feature calculation, we obtained top 10 core genes in this network which were AKT1, IL1B, TNF, IL6, JUN, CCL2, FOS, VEGFA, CXCL8, and ICAM1. KEGG pathway enrichment analysis. These indicated that quercetin produced the therapeutic effects against cardiovascular disease by systemically and holistically regulating many signaling pathways, including Fluid shear stress and atherosclerosis, AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, MAPK signaling pathway, IL-17 signaling pathway and PI3K-Akt signaling pathway.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Guillermo Palou-Márquez ◽  
Isaac Subirana ◽  
Lara Nonell ◽  
Alba Fernández-Sanlés ◽  
Roberto Elosua

Abstract Background The integration of different layers of omics information is an opportunity to tackle the complexity of cardiovascular diseases (CVD) and to identify new predictive biomarkers and potential therapeutic targets. Our aim was to integrate DNA methylation and gene expression data in an effort to identify biomarkers related to cardiovascular disease risk in a community-based population. We accessed data from the Framingham Offspring Study, a cohort study with data on DNA methylation (Infinium HumanMethylation450 BeadChip; Illumina) and gene expression (Human Exon 1.0 ST Array; Affymetrix). Using the MOFA2 R package, we integrated these data to identify biomarkers related to the risk of presenting a cardiovascular event. Results Four independent latent factors (9, 19, 21—only in women—and 27), driven by DNA methylation, were associated with cardiovascular disease independently of classical risk factors and cell-type counts. In a sensitivity analysis, we also identified factor 21 as associated with CVD in women. Factors 9, 21 and 27 were also associated with coronary heart disease risk. Moreover, in a replication effort in an independent study three of the genes included in factor 27 were also present in a factor identified to be associated with myocardial infarction (CDC42BPB, MAN2A2 and RPTOR). Factor 9 was related to age and cell-type proportions; factor 19 was related to age and B cells count; factor 21 pointed to human immunodeficiency virus infection-related pathways and inflammation; and factor 27 was related to lifestyle factors such as alcohol consumption, smoking and body mass index. Inclusion of factor 21 (only in women) improved the discriminative and reclassification capacity of the Framingham classical risk function and factor 27 improved its discrimination. Conclusions Unsupervised multi-omics data integration methods have the potential to provide insights into the pathogenesis of cardiovascular diseases. We identified four independent factors (one only in women) pointing to inflammation, endothelium homeostasis, visceral fat, cardiac remodeling and lifestyles as key players in the determination of cardiovascular risk. Moreover, two of these factors improved the predictive capacity of a classical risk function.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
N. Aerts ◽  
D. Le Goff ◽  
M. Odorico ◽  
J. Y. Le Reste ◽  
P. Van Bogaert ◽  
...  

Abstract Background Cardiovascular diseases are the world’s leading cause of morbidity and mortality. An active lifestyle is one of the cornerstones in the primary prevention of cardiovascular disease. An initial step in guiding primary prevention programs is to refer to clinical guidelines. We aimed to systematically review clinical practice guidelines on primary prevention of cardiovascular disease and their recommendations regarding physical activity. Methods We systematically searched Trip Medical Database, PubMed and Guidelines International Network from January 2012 up to December 2020 using the following search strings: ‘cardiovascular disease’, ‘prevention’, combined with specific cardiovascular disease risk factors. The identified records were screened for relevance and content. We methodologically assessed the selected guidelines using the AGREE II tool. Recommendations were summarized using a consensus-developed extraction form. Results After screening, 27 clinical practice guidelines were included, all of which were developed in Western countries and showed consistent rigor of development. Guidelines were consistent about the benefit of regular, moderate-intensity, aerobic physical activity. However, recommendations on strategies to achieve and sustain behavior change varied. Multicomponent interventions, comprising education, counseling and self-management support, are recommended to be delivered by various providers in primary health care or community settings. Guidelines advise to embed patient-centered care and behavioral change techniques in prevention programs. Conclusions Current clinical practice guidelines recommend similar PA lifestyle advice and propose various delivery models to be considered in the design of such interventions. Guidelines identify a gap in evidence on the implementation of these recommendations into practice.


Author(s):  
Peter Cox ◽  
Sonal Gupta ◽  
Sizheng Steven Zhao ◽  
David M. Hughes

AbstractThe aims of this systematic review and meta-analysis were to describe prevalence of cardiovascular disease in gout, compare these results with non-gout controls and consider whether there were differences according to geography. PubMed, Scopus and Web of Science were systematically searched for studies reporting prevalence of any cardiovascular disease in a gout population. Studies with non-representative sampling, where a cohort had been used in another study, small sample size (< 100) and where gout could not be distinguished from other rheumatic conditions were excluded, as were reviews, editorials and comments. Where possible meta-analysis was performed using random-effect models. Twenty-six studies comprising 949,773 gout patients were included in the review. Pooled prevalence estimates were calculated for five cardiovascular diseases: myocardial infarction (2.8%; 95% confidence interval (CI)s 1.6, 5.0), heart failure (8.7%; 95% CI 2.9, 23.8), venous thromboembolism (2.1%; 95% CI 1.2, 3.4), cerebrovascular accident (4.3%; 95% CI 1.8, 9.7) and hypertension (63.9%; 95% CI 24.5, 90.6). Sixteen studies reported comparisons with non-gout controls, illustrating an increased risk in the gout group across all cardiovascular diseases. There were no identifiable reliable patterns when analysing the results by country. Cardiovascular diseases are more prevalent in patients with gout and should prompt vigilance from clinicians to the need to assess and stratify cardiovascular risk. Future research is needed to investigate the link between gout, hyperuricaemia and increased cardiovascular risk and also to establish a more thorough picture of prevalence for less common cardiovascular diseases.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Qingming Ma ◽  
Haixia Ma ◽  
Fenglan Xu ◽  
Xinyu Wang ◽  
Wentao Sun

AbstractDue to extremely severe morbidity and mortality worldwide, it is worth achieving a more in-depth and comprehensive understanding of cardiovascular diseases. Tremendous effort has been made to replicate the cardiovascular system and investigate the pathogenesis, diagnosis and treatment of cardiovascular diseases. Microfluidics can be used as a versatile primary strategy to achieve a holistic picture of cardiovascular disease. Here, a brief review of the application of microfluidics in comprehensive cardiovascular disease research is presented, with specific discussions of the characteristics of microfluidics for investigating cardiovascular diseases integrally, including the study of pathogenetic mechanisms, the development of accurate diagnostic methods and the establishment of therapeutic treatments. Investigations of critical pathogenetic mechanisms for typical cardiovascular diseases by microfluidic-based organ-on-a-chip are categorized and reviewed, followed by a detailed summary of microfluidic-based accurate diagnostic methods. Microfluidic-assisted cardiovascular drug evaluation and screening as well as the fabrication of novel delivery vehicles are also reviewed. Finally, the challenges with and outlook on further advancing the use of microfluidics technology in cardiovascular disease research are highlighted and discussed.


Sign in / Sign up

Export Citation Format

Share Document