scholarly journals Kaiso Regulates DNA Methylation Homeostasis

2021 ◽  
Vol 22 (14) ◽  
pp. 7587
Author(s):  
Darya Kaplun ◽  
Alexey Starshin ◽  
Fedor Sharko ◽  
Kristina Ganova ◽  
Galina Filonova ◽  
...  

Gain and loss of DNA methylation in cells is a dynamic process that tends to achieve an equilibrium. Many factors are involved in maintaining the balance between DNA methylation and demethylation. Previously, it was shown that methyl-DNA protein Kaiso may attract NCoR, SMRT repressive complexes affecting histone modifications. On the other hand, the deficiency of Kaiso resulted in reduced methylation of ICR in H19/Igf2 locus and Oct4 promoter in mouse embryonic fibroblasts. However, nothing is known about how Kaiso influences DNA methylation at the genome level. Here we show that deficiency of Kaiso led to whole-genome hypermethylation, using Kaiso deficient human renal cancer cell line obtained via CRISPR/CAS9 genome editing. However, Kaiso serves to protect genic regions, enhancers, and regions with a low level of histone modifications from demethylation. We detected hypomethylation of binding sites for Oct4 and Nanog in Kaiso deficient cells. Kaiso immunoprecipitated with de novo DNA methyltransferases DNMT3a/3b, but not with maintenance methyltransferase DNMT1. Thus, Kaiso may attract methyltransferases to surrounding regions and modulate genome methylation in renal cancer cells apart from being methyl DNA binding protein.

Author(s):  
Arlette Rwigemera ◽  
Rhizlane El omri-Charai ◽  
Laetitia L Lecante ◽  
Geraldine Delbes

Abstract Epigenetic reprogramming during perinatal germ cell development is essential for genomic imprinting and cell differentiation; however, the actors of this key event and their dynamics are poorly understood in rats. Our study aimed to characterize the expression patterns of epigenetic modifiers and the changes in histone modifications in rat gonocytes at the time of de novo DNA methylation. Using transgenic rats expressing Green Fluorescent Protein (GFP) specifically in germ cells, we purified male gonocytes by fluorescent activated cell sorting at various stages of perinatal development and established the transcriptomic profile of 165 epigenetic regulators. Using immunofluorescence on gonad sections, we tracked six histone modifications in rat male and female perinatal germ cells over time, including methylation of histone H3 on lysines 27, 9, and 4; ubiquitination of histone H2A on lysine119; and acetylation of histone H2B on lysine 20. The results revealed the dynamics in the expression of ten-eleven translocation enzymes and DNA methyltransferases in male gonocytes at the time of de novo DNA methylation. Moreover, our transcriptomic data indicate a decrease in histone ubiquitination and methylation coinciding with the beginning of de novo DNA methylation. Decreases in H2AK119Ub and H3K27me3 were further confirmed by immunofluorescence in the male germ cells but were not consistent for all H3 methylation sites examined. Together, our data highlighted transient chromatin remodeling involving histone modifications during de novo DNA methylation. Further studies addressing how these dynamic changes in histone posttranslational modifications could guide de novo DNA methylation will help explain the complex establishment of the male germ cell epigenome.


2020 ◽  
Author(s):  
D Kaplun ◽  
G Filonova ◽  
Y. Lobanova ◽  
A Mazur ◽  
S Zhenilo

ABSTRACTGain and loss of DNA methylation in cells is a dynamic process that tends to achieve an equilibrium. Many factors are involved in maintaining the balance between DNA methylation and demethylation. Previously, it was shown that methyl-DNA protein Kaiso may attract NcoR, SMRT repressive complexes affecting histone modifications. On the other hand, the deficiency of Kaiso resulted in slightly reduced methylation of ICR in H19/Igf2 locus and Oct4 promoter in mouse embryonic fibroblasts. However, nothing is known whether Kaiso may attract DNA methyltransferase to influence DNA methylation level. The main idea of this work is that Kaiso may lead to DNA hypermethylation attracting de novo DNA methyltransferases. We demonstrated that Kaiso regulates TRIM25 promoter methylation. It can form a complex with DNMT3b. BTB/POZ domain of Kaiso and ADD domain of DNA methyltransferase are essential for complex formation. Thus, Kaiso can affect DNA methylation.


Author(s):  
Irfete S. Fetahu ◽  
Sabine Taschner-Mandl

AbstractNeuroblastoma (NB) is a pediatric cancer of the sympathetic nervous system and one of the most common solid tumors in infancy. Amplification of MYCN, copy number alterations, numerical and segmental chromosomal aberrations, mutations, and rearrangements on a handful of genes, such as ALK, ATRX, TP53, RAS/MAPK pathway genes, and TERT, are attributed as underlying causes that give rise to NB. However, the heterogeneous nature of the disease—along with the relative paucity of recurrent somatic mutations—reinforces the need to understand the interplay of genetic factors and epigenetic alterations in the context of NB. Epigenetic mechanisms tightly control gene expression, embryogenesis, imprinting, chromosomal stability, and tumorigenesis, thereby playing a pivotal role in physio- and pathological settings. The main epigenetic alterations include aberrant DNA methylation, disrupted patterns of posttranslational histone modifications, alterations in chromatin composition and/or architecture, and aberrant expression of non-coding RNAs. DNA methylation and demethylation are mediated by DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) proteins, respectively, while histone modifications are coordinated by histone acetyltransferases and deacetylases (HATs, HDACs), and histone methyltransferases and demethylases (HMTs, HDMs). This article focuses predominately on the crosstalk between the epigenome and NB, and the implications it has on disease diagnosis and treatment.


2021 ◽  
Vol 22 (7) ◽  
pp. 3735
Author(s):  
Guillaume Velasco ◽  
Damien Ulveling ◽  
Sophie Rondeau ◽  
Pauline Marzin ◽  
Motoko Unoki ◽  
...  

DNA methylation (DNAme) profiling is used to establish specific biomarkers to improve the diagnosis of patients with inherited neurodevelopmental disorders and to guide mutation screening. In the specific case of mendelian disorders of the epigenetic machinery, it also provides the basis to infer mechanistic aspects with regard to DNAme determinants and interplay between histone and DNAme that apply to humans. Here, we present comparative methylomes from patients with mutations in the de novo DNA methyltransferases DNMT3A and DNMT3B, in their catalytic domain or their N-terminal parts involved in reading histone methylation, or in histone H3 lysine (K) methylases NSD1 or SETD2 (H3 K36) or KMT2D/MLL2 (H3 K4). We provide disease-specific DNAme signatures and document the distinct consequences of mutations in enzymes with very similar or intertwined functions, including at repeated sequences and imprinted loci. We found that KMT2D and SETD2 germline mutations have little impact on DNAme profiles. In contrast, the overlapping DNAme alterations downstream of NSD1 or DNMT3 mutations underlines functional links, more specifically between NSD1 and DNMT3B at heterochromatin regions or DNMT3A at regulatory elements. Together, these data indicate certain discrepancy with the mechanisms described in animal models or the existence of redundant or complementary functions unforeseen in humans.


2019 ◽  
Vol 31 (8) ◽  
pp. 1386 ◽  
Author(s):  
Fatma Uysal ◽  
Gokhan Akkoyunlu ◽  
Saffet Ozturk

DNA methylation plays key roles in epigenetic regulation during mammalian spermatogenesis. DNA methyltransferases (DNMTs) function in de novo and maintenance methylation processes by adding a methyl group to the fifth carbon atom of the cytosine residues within cytosine–phosphate–guanine (CpG) and non-CpG dinucleotide sites. Azoospermia is one of the main causes of male infertility, and is classified as obstructive (OA) or non-obstructive (NOA) azoospermia based on histopathological characteristics. The molecular background of NOA is still largely unknown. DNA methylation performed by DNMTs is implicated in the transcriptional regulation of spermatogenesis-related genes. The aim of the present study was to evaluate the cellular localisation and expression levels of the DNMT1, DNMT3A and DNMT3B proteins, as well as global DNA methylation profiles in testicular biopsy samples obtained from men with various types of NOA, including hypospermatogenesis (hyposperm), round spermatid (RS) arrest, spermatocyte (SC) arrest and Sertoli cell-only (SCO) syndrome. In the testicular biopsy samples, DNMT1 expression and global DNA methylation levels decreased gradually from the hyposperm to SCO groups (P<0.05). DNMT3A expression was significantly decreased in the RS arrest, SC arrest and SCO groups compared with the hyposperm group (P<0.05). DNMT3B expression was significantly lower in the RS arrest and SCO groups than in the hyposperm group (P<0.05). Although both DNMT1 and DNMT3A were localised in the cytoplasm and nucleus of the spermatogenic cells, staining for DNMT3B was more intensive in the nucleus of spermatogenic cells. In conclusion, the findings suggest that significant changes in DNMT expression and global DNA methylation levels in spermatogenic cells may contribute to development of male infertility in the NOA groups. Further studies are needed to determine the molecular biological effects of the altered DNMT expression and DNA methylation levels on development of male infertility.


Genes ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 172 ◽  
Author(s):  
Hemant Gujar ◽  
Daniel Weisenberger ◽  
Gangning Liang

A DNA sequence is the hard copy of the human genome and it is a driving force in determining the physiological processes in an organism. Concurrently, the chemical modification of the genome and its related histone proteins is dynamically involved in regulating physiological processes and diseases, which overall constitutes the epigenome network. Among the various forms of epigenetic modifications, DNA methylation at the C-5 position of cytosine in the cytosine–guanine (CpG) dinucleotide is one of the most well studied epigenetic modifications. DNA methyltransferases (DNMTs) are a family of enzymes involved in generating and maintaining CpG methylation across the genome. In mammalian systems, DNA methylation is performed by DNMT1 and DNMT3s (DNMT3A and 3B). DNMT1 is predominantly involved in the maintenance of DNA methylation during cell division, while DNMT3s are involved in establishing de novo cytosine methylation and maintenance in both embryonic and somatic cells. In general, all DNMTs require accessory proteins, such as ubiquitin-like containing plant homeodomain (PHD) and really interesting new gene (RING) finger domain 1 (UHRF1) or DNMT3-like (DNMT3L), for their biological function. This review mainly focuses on the role of DNMT3B and its isoforms in de novo methylation and maintenance of DNA methylation, especially with respect to their role as an accessory protein.


2020 ◽  
Vol 48 (7) ◽  
pp. 3949-3961 ◽  
Author(s):  
Chien-Chu Lin ◽  
Yi-Ping Chen ◽  
Wei-Zen Yang ◽  
James C K Shen ◽  
Hanna S Yuan

Abstract DNA methyltransferases are primary enzymes for cytosine methylation at CpG sites of epigenetic gene regulation in mammals. De novo methyltransferases DNMT3A and DNMT3B create DNA methylation patterns during development, but how they differentially implement genomic DNA methylation patterns is poorly understood. Here, we report crystal structures of the catalytic domain of human DNMT3B–3L complex, noncovalently bound with and without DNA of different sequences. Human DNMT3B uses two flexible loops to enclose DNA and employs its catalytic loop to flip out the cytosine base. As opposed to DNMT3A, DNMT3B specifically recognizes DNA with CpGpG sites via residues Asn779 and Lys777 in its more stable and well-ordered target recognition domain loop to facilitate processive methylation of tandemly repeated CpG sites. We also identify a proton wire water channel for the final deprotonation step, revealing the complete working mechanism for cytosine methylation by DNMT3B and providing the structural basis for DNMT3B mutation-induced hypomethylation in immunodeficiency, centromere instability and facial anomalies syndrome.


PLoS Genetics ◽  
2011 ◽  
Vol 7 (8) ◽  
pp. e1002243 ◽  
Author(s):  
Wei Li ◽  
Hui Liu ◽  
Zhi Juan Cheng ◽  
Ying Hua Su ◽  
Hua Nan Han ◽  
...  

2018 ◽  
Vol 5 (1) ◽  
Author(s):  
Likhitha Kolla ◽  
David S. Heo ◽  
Daniel P. Rosenberg ◽  
Sara A. Barlow ◽  
Anna A. Maximova ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 848-848
Author(s):  
Allison Mayle ◽  
Grant Anthony Challen ◽  
Deqiang Sun ◽  
Mira Jeong ◽  
Min Luo ◽  
...  

Abstract Abstract 848 DNA methylation is an epigenetic modification in vertebrate genomes critical for regulation of gene expression. DNA methylation is catalyzed by a family of DNA methyltransferase enzymes, Dnmt1, Dnmt3a, and Dnmt3b. Dnmt1 is primarily a maintenance methyltransferase, targeting hemimethylated DNA to reestablish methylation marks after DNA replication. Dnmt3a and Dnmt3b are de novo methyltransferases that are essential for normal embryonic development. In humans, somatic mutations in DNTM3A have been identified in ∼20% of human acute myeloid leukemia (AML) and ∼10% of myelodysplastic syndrome (MDS) patients, but the mechanisms through which these mutations contribute to pathogenesis is not well understood. Congenital mutations in DNMT3B can cause ICF (immunodeficiency, centromeric instability, and facial anomalies) syndrome. These patients exhibit chromosomal instability due to heterochromatin decondensation and demethylation of satellite DNA. Our group has recently reported that Dnmt3a is essential for HSC differentiation (Challen Nature Genetics, 2011). Conditional knockout of Dnmt3a (Dnmt3a-KO) resulted in HSCs that could not sustain peripheral blood generation after serial transplantation, but phenotypically defined HSCs accumulated in the bone marrow. Dnmt3b is also highly expressed in HSCs, but its contribution to gene regulation in hematopoiesis is unclear. Here, we examine the role of Dnmt3b, alone and in combination with Dnmt3a KO, in the regulation of hematopoiesis. We performed conditional ablation of Dnmt3b, as well as Dnmt3a and Dnmt3b simultaneously using the Mx1-cre system. Unlike the Dnmt3a-KO HSCs, loss of Dnmt3b had a minimal impact on blood production. Even after several rounds of transplantation, 3b-KO HSCs performed similarly to WT controls. However, the Dnmt3ab-dKO (double knock-out) peripheral blood contribution was quickly and severely diminished, accompanied by a dramatic accumulation of Dnmt3ab-dKO HSCs in the bone marrow (Figure 1). The dKO phenotype paralleled that of the 3a-KO HSC, but was more extreme. To examine the impact of loss of Dnmt3a and -3b on DNA methylation in HSCs, we performed Whole Genome Bisulfite Sequencing (WGBS) on Dnmt3a-KO, Dnmt3ab- dKO and control HSCs. As we previously found with more limited DNA methylation analysis, loss of Dnmt3a led to both increases and decreases of DNA methylation at distinct genomic regions (Challen, Nature Genetics, 2011). However, loss of both Dnmt3a and -3b primarily resulted in loss of DNA methylation that was much more extensive than that seen in the 3a-KO. In addition, RNAseq of the mutant HSCs revealed increased expression of repetitive elements, inappropriate splicing, and truncation of 3ÕUTRs. To gain insight into the accumulation of Dnmt3ab-dKO HSCs in the bone marrow, we performed a time course analysis of the proliferation and apoptosis status of the HSCs. Every four weeks after transplantation of HSCs, we sacrificed a cohort of 3 control and 3 dKO mice, counted donor derived HSCs in the bone marrow, and analyzed their Ki67 and Annexin V expression. Up to 12 weeks post-transplant, no significant differences are seen in the expression of Ki67 or Annexin V. These data show that while Dnmt3b alone has minimal impact on DNA methylation in HSCs, Dnmt3a and -3b act synergistically to effect gene expression changes that permit HSC differentiation. In the absence of both of these de novo DNA methyltransferases, there is an immediate and extreme shift toward self-renewal of dKO HSCs. The Ki67 and Annexin V expression patterns suggest that a lack of de novo DNA methylation does not affect the proliferation or apoptosis of HSCs, but instead that the accumulation of HSCs and lack of peripheral blood contribution is primarily due to an imbalance between self-renewal and differentiation. By understanding the mechanisms through which Dnmt3a and -3b exert these effects, we should identify genes that are critical for normal hematopoietic differentiation. These genes may serve as targets for therapeutic intervention in malignancies caused by defective DNA methyltransferases. Figure 1: HSC composition of the bone marrow after secondary transplantation of control (left) and double Dnmt3a/3b KO (right) HSCs. After control HSC transplantation, HSCs comprise ∼0.01% of whole bone marrow. After transplantation of dKO HSCs, phenotypically-defined HSCs (KLS CD34–Flk2–) comprise ∼0.48% of bone marrow. Figure 1:. HSC composition of the bone marrow after secondary transplantation of control (left) and double Dnmt3a/3b KO (right) HSCs. After control HSC transplantation, HSCs comprise ∼0.01% of whole bone marrow. After transplantation of dKO HSCs, phenotypically-defined HSCs (KLS CD34–Flk2–) comprise ∼0.48% of bone marrow. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document