scholarly journals Necrostatin-1 Supplementation to Islet Tissue Culture Enhances the In-Vitro Development and Graft Function of Young Porcine Islets

2021 ◽  
Vol 22 (16) ◽  
pp. 8367
Author(s):  
Hien Lau ◽  
Shiri Li ◽  
Nicole Corrales ◽  
Samuel Rodriguez ◽  
Mohammadreza Mohammadi ◽  
...  

Pre-weaned porcine islets (PPIs) represent an unlimited source for islet transplantation but are functionally immature. We previously showed that necrostatin-1 (Nec-1) immediately after islet isolation enhanced the in vitro development of PPIs. Here, we examined the impact of Nec-1 on the in vivo function of PPIs after transplantation in diabetic mice. PPIs were isolated from pancreata of 8–15-day-old, pre-weaned pigs and cultured in media alone, or supplemented with Nec-1 (100 µM) on day 0 or on day 3 of culture (n = 5 for each group). On day 7, islet recovery, viability, oxygen consumption rate, insulin content, cellular composition, insulin secretion capacity, and transplant outcomes were evaluated. While islet viability and oxygen consumption rate remained high throughout 7-day tissue culture, Nec-1 supplementation on day 3 significantly improved islet recovery, insulin content, endocrine composition, GLUT2 expression, differentiation potential, proliferation capacity of endocrine cells, and insulin secretion. Adding Nec-1 on day 3 of tissue culture enhanced the islet recovery, proportion of delta cells, beta-cell differentiation and proliferation, and stimulation index. In vivo, this leads to shorter times to normoglycemia, better glycemic control, and higher circulating insulin. Our findings identify the novel time-dependent effects of Nec-1 supplementation on porcine islet quantity and quality prior to transplantation.

2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Mengling Wang ◽  
Feng Zeng ◽  
Fengling Ning ◽  
Yinhang Wang ◽  
Shilin Zhou ◽  
...  

Abstract Background and aims Renal fibrosis is the common outcome in all progressive forms of chronic kidney disease. Unfortunately, the pathogenesis of renal fibrosis remains largely unexplored, among which metabolic reprogramming plays an extremely crucial role in the evolution of renal fibrosis. Ceria nanoparticles (CeNP-PEG) with strong ROS scavenging and anti-inflammatory activities have been applied for mitochondrial oxidative stress and inflammatory diseases. The present study aims to determine whether CeNP-PEG has therapeutic value for renal fibrosis. Methods The unilateral ureteral obstructive fibrosis model was used to assess the therapeutic effects in vivo. Transforming growth factor beta1-induced epithelial-to-mesenchymal transition in HK-2 cells was used as the in vitro cell model. The seahorse bioscience X96 extracellular flux analyzer was used to measure the oxygen consumption rate and extracellular acidification rate. Results In the present study, CeNP-PEG treatment significantly ameliorated renal fibrosis by increased E-cadherin protein expression, and decreased α-SMA, Vimentin and Fibronectin expression both in vitro and in vivo. Additionally, CeNP-PEG significantly reduced the ROS formation and improved the levels of mitochondrial ATP. The seahorse analyzer assay demonstrated that the extracellular acidification rate markedly decreased, whereas the oxygen consumption rate markedly increased, in the presence of CeNP-PEG. Furthermore, the mitochondrial membrane potential markedly enhanced, hexokinase 1 and hexokinase 2 expression significantly decreased after treatment with CeNP-PEG. Conclusions CeNP-PEG can block the dysregulated metabolic status and exert protective function on renal fibrosis. This may provide another therapeutic option for renal fibrosis. Graphical Abstract


2021 ◽  
Author(s):  
Hien Lau ◽  
Nicole Corrales ◽  
Samuel Rodriguez ◽  
Soomin Park ◽  
Mohammadreza Mohammadi ◽  
...  

Nutrients ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1962 ◽  
Author(s):  
Seun Akindehin ◽  
Young-Suk Jung ◽  
Sang-Nam Kim ◽  
Yeon-Ho Son ◽  
Icksoo Lee ◽  
...  

Myricetin is a biologically active natural polyphenol with beneficial effects on metabolic health. This study aimed to examine the effects of myricetin on the expression levels of genes involved in lipolysis and mitochondrial respiration in adipocytes and the anti-obesity potential of myricetin. The results indicated that myricetin reduced triglyceride (TG) content and increased mitochondrial content and oxygen consumption rate (OCR) in adipocytes in vitro. To determine anti-obesity effect of myricetin, C57BL6/J mice were fed a high-fat diet (HFD) for eight weeks and then treated with myricetin (10 mg/kg) for 2 weeks. The in vivo treatment of myricetin reduced body weight by 11%. Furthermore, it improved the glucose tolerance, and increased fatty acid consumption of HFD-fed mice. Myricetin treatment increased Sirt3 expression and reduced the acetylation of mitochondrial proteins in adipose tissue. Finally, the knockdown of Sirt3 in adipocytes reduced the myricetin-induced increase in mitochondrial oxygen consumption rate by about 27% compared to controls. Our results indicated that myricetin exerted anti-obesity effects through the upregulation of Sirt3 expression and mitochondrial metabolism in adipose tissue.


2000 ◽  
Vol 164 (6) ◽  
pp. 3047-3055 ◽  
Author(s):  
Dragana Jankovic ◽  
Marika C. Kullberg ◽  
Nancy Noben-Trauth ◽  
Patricia Caspar ◽  
William E. Paul ◽  
...  

2004 ◽  
Vol 16 (2) ◽  
pp. 154
Author(s):  
H.S. Park ◽  
M.Y. Lee ◽  
S.P. Hong ◽  
J.I. Jin ◽  
J.K. Park ◽  
...  

Recent techniques in somatic cell nuclear transfer (SCNT) have been widely used for animal research. In addition, SCNT techniques may allow for the rescue of endangered species. Despite efforts for wildlife preservation, however, some threatened or endangered wild animal species will likely become extinct. As a preliminary experiment of a series in wildlife research, we tried to identify an improved method for the production of more transferable NT embryos in goats. Mature donor animals of Korean native goats (20–25kg) were synchronized with a CIDR (type G; InterAg, New Zealand) vaginal implant for 10 days followed by a total of 8 twice daily injections of 70mg of FSH (Folltropine, London, Ontario, Canada) and 400IU of hCG (Chorulon, Intervet, Moxmeer, The Netherlands). Oocytes were then collected surgically by retograde oviduct flush or direct aspiration from ovarian follicles in vivo at 29–34h after hCG. Oocytes collected from follicles were matured in TCM-199 containing 10% FBS and hormones. Prepared ear skin cells from the goat were cultured in TCM-199 containing 10% FBS at 39°C, 5% CO2 in air, and confluent monolayers were obtained. Oocytes were enucleated and donor cells from serum starvation (0.5%) culture were fused through a single electric pulse (DC 2.36kvcm−1, 17μs), and then activated by a single electric pulse (AC 5vmm−1, 5s+DC 1.56kvcm−1, 30μs) or chemical treatment (5μgmL−1 ionomycin 5min−1, 1.9mM 6-DMAP/4h). Reconstructed oocytes were cultured in M16 medium with 10% goat serum (GS) for 6–7 days. Data were analyzed by chi-square test. In in vitro development, significantly (P<0.05) more oocytes were cleaved (24/30, 80.0%) and developed (7/24, 29.2%) to morula or blastocyst stage, respectively, in NT oocytes activated by Iono + DMAP compared to electric stimulated oocytes (2/21, 40.0%; 0/2, 0%). There was a significant difference in in vitro development of NT embryos by the method of oocyte collection. Cleavage rate was higher (P<0.05) in NT embryos from in vivo oocytes (23/28, 82.1%) than in in vitro matured oocytes (19/35, 54.3%), and further development to morula or blastocyst was also significantly (P<0.05%) higher in NT embryos from in vivo oocytes (7/23, 30.4%) than in NT embryos from in vitro matured oocytes (0/19, 0%). When we compared NT embryos to parthenotes, developmental rate was not significantly different between NT embryos and parthenotes. These results strongly suggest that the in vivo oocytes will have superior developmental potential to oocytes matured in vitro. Table 1 Effect of different oocyte source on in vitro development following caprine SCNT


1953 ◽  
Vol 9 (4) ◽  
pp. 379-390 ◽  
Author(s):  
M. REISS ◽  
EVA BRUMMEL ◽  
I. D. K. HALKERSTON ◽  
F. E. BADRICK ◽  
M. FENWICK

A technique for measuring the action of small doses of ACTH on the oxygen consumption of slices of cattle adrenal cortex is described. The oxygen consumption rate of such slices in vitro is increased by ACTH. A linear relationship between logarithm of the dose of ACTH and the percentage increase in the rate of oxygen uptake is obtained with this method, and its suitability for biological assay purposes has been investigated. The question of the specificity of this action of ACTH is discussed.


Author(s):  
Sara Mantero ◽  
Federica Boschetti

Bioreactors are powerful tools for in vitro development of engineered substitutes through controlled biological, physical, and mechanical culture conditions: bioreactor technology allows a closer in vitro replication of native tissues. One of bioreactors applications is the design of in vitro 3D tissue models as a bridge between 2D and in vivo models, allowing the application of 3R (replacement, reduction, refinement) principle. To this aim, bioreactors can be used to culture cells seeded on engineered scaffolds under in vivo-like conditions. Another key use of bioreactors is for perfusion decellularization of tissues and organs to be used as scaffolds. This contribution describes a dynamic stretching. bioreactor, imposing a mechanical stretching to the cultured constructs, allowing the development of skeletal muscle engineered constructs, and a decellularization bioreactor, designed for decellularization of blood vessels.


2015 ◽  
Vol 155 ◽  
pp. 35-39 ◽  
Author(s):  
I. Heredero-Bermejo ◽  
A. Criado-Fornelio ◽  
J. Soliveri ◽  
J.A. Díaz-Martín ◽  
J. Matilla-Fuentes ◽  
...  

2016 ◽  
Vol 143 ◽  
pp. 1-7 ◽  
Author(s):  
V. Praveen Chakravarthi ◽  
S.S.R. Kona ◽  
A.V.N. Siva Kumar ◽  
M. Bhaskara ◽  
V.H. Rao

2010 ◽  
Vol 22 (1) ◽  
pp. 185
Author(s):  
R. P. C. Gerger ◽  
F. Forell ◽  
J. C. Mezzalira ◽  
F. Zago ◽  
F. K. Vieira ◽  
...  

Despite the apparent success of cloning by somatic cell nuclear transfer (SCNT), the efficiency in development to term remains low, with a high rate of losses occurring throughout pregnancy due to faulty reprogramming and conceptus abnormalities. As the ideal fusion-activation interval for optimal nuclear reprogramming after cloning is still ill-defined, the aim of this study was to determine the effect of 2 distinct fusion-activation intervals and embryo aggregation on in vitro development of cloned bovine embryos. Bovine COCs from slaughterhouse ovaries were used after IVM for the production of cloned embryos by handmade cloning, according to our established procedures (Ribeiro et al. 2009 Cloning Stem Cells, in press). Following cumulus and zona removal, oocytes were manually bisected, with hemi-cytoplasts selected by DNA staining. Two hemi-cytoplasts and an adult skin somatic cell were attached and fused with a 15V AC pre-pulse for 5 s, followed by a double 1.2 kV cm-1 DC pulse for 20 μs. Reconstructed embryos were activated in ionomycin exactly at 2 or 4 h post-fusion (2 hpf or 4 hpf), followed by an incubation in 6-DMAP for 4 h. Cloned embryos from both fusion-activation intervals were in vitro-cultured in the well of the well (WOW) system for 7 days, allocating one (1 × 100%) or two (2 × 100%) cloned embryos per WOW. Grade 1 Day-7 blastocysts were transferred to synchronous recipients. Cleavage (Day 2) and blastocyst (Day 7) rates, on a per WOW basis, and pregnancy (Days 30 and 150) rates were compared using the chi-square or the Fisher test, with results from 9 replications summarized in Table 1. Increasing the fusion-activation interval to 4 h decreased cleavage but not blastocyst rates in 1 × 100% embryos. Also, blastocyst rates were lower in 1 × 100% embryos activated 2 h post-fusion. In general, cleavage and blastocysts rates for 2 × 100% embryos (91.5 and 46.0%) were higher than for 1 × 100% embryo counterparts (74.4 and 31.3%), respectively, regardless of the activation time. In addition, blastocyst rates for 4 hpf-activated embryos (50.3%), based on cleavage, were higher than for 2 hpf-activated embryos (38.3%), irrespective of the aggregation scheme. Nonetheless, despite differences in in vitro development, pregnancy rates and conceptus development in the first half of pregnancy were similar between groups. A longer fusion-activation interval (4 hpf) or embryo aggregation (2 × 100%) increased blastocyst yield but did not improve in vivo development and pregnancy maintenance following the transfer to female recipients in cattle. Table 1.In vitro and in vivo development of cloned bovine embryos This study was supported by FAPESP and CAPES, Brazil.


Sign in / Sign up

Export Citation Format

Share Document