scholarly journals Poly ADP Ribose Polymerase Inhibitor Olaparib Targeting Microhomology End Joining in Retinoblastoma Protein Defective Cancer: Analysis of the Retinoblastoma Cell-Killing Effects by Olaparib after Inducing Double-Strand Breaks

2021 ◽  
Vol 22 (19) ◽  
pp. 10687
Author(s):  
Yuning Jiang ◽  
Jason C. Yam ◽  
Wai Kit Chu

Retinoblastoma is the most common intraocular cancer in childhood. Loss of function in both copies of the RB1 gene is the causal mutation of retinoblastoma. Current treatment for retinoblastoma includes the use of chemotherapeutic agents, such as the DNA damaging agent etoposide, which is a topoisomerase II poison that mainly generates DNA double-strand breaks (DSBs) and genome instability. Unfaithful repairing of DSBs could lead to secondary cancers and serious side effects. Previously, we found that RB knocked-down mammalian cells depend on a highly mutagenic pathway, the micro-homology mediated end joining (MMEJ) pathway, to repair DSBs. Poly ADP ribose polymerase 1 (PARP1) is a major protein in promoting the MMEJ pathway. In this study, we explored the effects of olaparib, a PARP inhibitor, in killing retinoblastoma cells. Retinoblastoma cell line Y79 and primary retinoblastoma cells expressed the cone-rod homeobox protein (CRX), a photoreceptor-specific marker. No detectable RB expression was found in these cells. The co-treatment of olaparib and etoposide led to enhanced cell death in both the Y79 cells and the primary retinoblastoma cells. Our results demonstrated the killing effects in retinoblastoma cells by PARP inhibitor olaparib after inducing DNA double-strand breaks. The use of olaparib in combination with etoposide could improve the cell-killing effects. Thus, lower dosages of etoposide can be used to treat retinoblastoma, which would potentially lead to a lower level of DSBs and a relatively more stable genome.

2019 ◽  
Vol 20 (24) ◽  
pp. 6316 ◽  
Author(s):  
Tahereh Mohammadian Gol ◽  
H. Peter Rodemann ◽  
Klaus Dittmann

Homologous recombination repair (HRR), non-homologous end-joining (NHEJ) and alternative NHEJ are major pathways that are utilized by cells for processing DNA double strand breaks (DNA-DSBs); their function plays an important role in the radiation resistance of tumor cells. Conflicting data exist regarding the role of Akt in homologous recombination (HR), i.e., the regulation of Rad51 as a major protein of this pathway. This study was designed to investigate the specific involvement of Akt isoforms in HRR. HCT116 colon cancer cells with stable AKT-knock-out and siRNA-mediated AKT-knockdown phenotypes were used to investigate the role of Akt1 and Akt2 isoforms in HR. The results clearly demonstrated that HCT116 AKT1-KO and AKT2-KO cells have a significantly reduced Rad51 foci formation 6 h post irradiation versus parental cells. Depletion of Akt1 and Akt2 protein levels as well as inhibition of Akt kinase activity resulted in an increased number of residual-γH2AX in CENP-F positive cells mainly representing the S and G2 phase cells. Furthermore, inhibition of NHEJ and HR using DNA-PK and Rad51 antagonists resulted in stronger radiosensitivity of AKT1 and AKT2 knockout cells versus wild type cells. These data collectively show that both Akt1 and Akt2 are involved in DSBs repair through HRR.


Genetics ◽  
1997 ◽  
Vol 146 (3) ◽  
pp. 1143-1151
Author(s):  
Gil Shalev ◽  
Avraham A Levy

The prominent repair mechanism of DNA double-strand breaks formed upon excision of the maize Ac transposable element is via nonhomologous end joining. In this work we have studied the role of homologous recombination as an additional repair pathway. To this end, we developed an assay whereby β-Glucuronidase (GUS) activity is restored upon recombination between two homologous ectopic (nonallelic) sequences in transgenic tobacco plants. One of the recombination partners carried a deletion at the 5′ end of GUS and an Ac or a Ds element inserted at the deletion site. The other partner carried an intact 5′ end of the GUS open reading frame and had a deletion at the 3′ end of the gene. Based on GUS reactivation data, we found that the excision of Ac induced recombination between ectopic sequences by at least two orders of magnitude. Recombination events, visualized by blue staining, were detected in seedlings, in pollen and in protoplasts. DNA fragments corresponding to recombination events were recovered exclusively in crosses with Ac-carrying plants, providing physical evidence for Ac-induced ectopic recombination. The occurrence of ectopic recombination following double-strand breaks is a potentially important factor in plant genome evolution.


DNA Repair ◽  
2015 ◽  
Vol 31 ◽  
pp. 29-40 ◽  
Author(s):  
Mario Moscariello ◽  
Radi Wieloch ◽  
Aya Kurosawa ◽  
Fanghua Li ◽  
Noritaka Adachi ◽  
...  

DNA Repair ◽  
2007 ◽  
Vol 6 (5) ◽  
pp. 639-648 ◽  
Author(s):  
Yukitaka Katsura ◽  
Shigeru Sasaki ◽  
Masanori Sato ◽  
Kiyoshi Yamaoka ◽  
Kazumi Suzukawa ◽  
...  

2007 ◽  
Vol 177 (2) ◽  
pp. 219-229 ◽  
Author(s):  
Naoya Uematsu ◽  
Eric Weterings ◽  
Ken-ichi Yano ◽  
Keiko Morotomi-Yano ◽  
Burkhard Jakob ◽  
...  

The DNA-dependent protein kinase catalytic subunit (DNA-PKCS) plays an important role during the repair of DNA double-strand breaks (DSBs). It is recruited to DNA ends in the early stages of the nonhomologous end-joining (NHEJ) process, which mediates DSB repair. To study DNA-PKCS recruitment in vivo, we used a laser system to introduce DSBs in a specified region of the cell nucleus. We show that DNA-PKCS accumulates at DSB sites in a Ku80-dependent manner, and that neither the kinase activity nor the phosphorylation status of DNA-PKCS influences its initial accumulation. However, impairment of both of these functions results in deficient DSB repair and the maintained presence of DNA-PKCS at unrepaired DSBs. The use of photobleaching techniques allowed us to determine that the kinase activity and phosphorylation status of DNA-PKCS influence the stability of its binding to DNA ends. We suggest a model in which DNA-PKCS phosphorylation/autophosphorylation facilitates NHEJ by destabilizing the interaction of DNA-PKCS with the DNA ends.


DNA Repair ◽  
2006 ◽  
Vol 5 (6) ◽  
pp. 741-749 ◽  
Author(s):  
Kyoko Nakamura ◽  
Wataru Sakai ◽  
Takuo Kawamoto ◽  
Ronan T. Bree ◽  
Noel F. Lowndes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document