scholarly journals FOXO3a and Its Regulators in Prostate Cancer

2021 ◽  
Vol 22 (22) ◽  
pp. 12530
Author(s):  
Dominika Ewa Habrowska-Górczyńska ◽  
Marta Justyna Kozieł ◽  
Karolina Kowalska ◽  
Agnieszka Wanda Piastowska-Ciesielska

Forkhead box O3 (FOXO3a) is a member of a subfamily of forkhead transcription factors involved in the basic processes within a cell, including proliferation, apoptosis, cell cycle regulation, and DNA damage. As a transcription factor, FOXO3a is involved in the response to cellular stress, UV radiation, or oxidative stress. Its regulation is based on the modification of proteins as well as regulation by other proteins, e.g., growth factors. FOXO3a is commonly deregulated in cancer cells, and its inactivation is associated with initiation and progression of tumorigenesis, suggesting its role as a tumor suppressor; however, its role is still disputed and seems to be dependent on upstream signaling. Nevertheless, FOXO3a serves as an interesting potential target in therapies as it is regulated during treatment with very common anti-cancer drugs such as paclitaxel, cisplatin, docetaxel, and doxorubicin. This review aims to update the reported role of FOXO3a in prostate cancer (PCa), with a focus on its regulators that might serve as potential therapeutic agents in PCa therapy.

2018 ◽  
Vol 18 (9) ◽  
pp. 869-876
Author(s):  
Samanta Salvi ◽  
Vincenza Conteduca ◽  
Cristian Lolli ◽  
Sara Testoni ◽  
Valentina Casadio ◽  
...  

Background: Adaptive upregulation of Androgen Receptor (AR) is the most common event involved in the progression from hormone sensitive to Castration-Resistant Prostate Cancer (CRPC). AR signaling remains the main target of new AR signalling-directed therapies such as abiraterone and enzalutamide in CRPC patients. Objective: In this review, we discuss general mechanisms of resistance to AR-targeted therapies, with a focus on the role of AR Copy Number (CN). We reported methods and clinical applications of AR CN evaluation in tissue and liquid biopsy, thus to have a complete information regarding its role as predictive and prognostic biomarker. Conclusion: Outcomes of CRPC patients are reported to be highly variable as the consequence of tumor heterogeneity. AR CN could contribute to patient selection and tumor monitoring in CRPC treated with new anti-cancer treatment as abiraterone and enzalutamide. Further studies to investigate AR CN effect to these agents and its potential combination with other prognostic or predictive clinical factors are necessary in the context of harmonized clinical trial design.


2019 ◽  
Vol 21 (10) ◽  
pp. 1297-1309 ◽  
Author(s):  
Denise D Correa ◽  
Jaya Satagopan ◽  
Axel Martin ◽  
Erica Braun ◽  
Maria Kryza-Lacombe ◽  
...  

AbstractBackgroundPatients with brain tumors treated with radiotherapy (RT) and chemotherapy (CT) often experience cognitive dysfunction. We reported that single nucleotide polymorphisms (SNPs) in the APOE, COMT, and BDNF genes may influence cognition in brain tumor patients. In this study, we assessed whether genes associated with late-onset Alzheimer’s disease (LOAD), inflammation, cholesterol transport, dopamine and myelin regulation, and DNA repair may influence cognitive outcome in this population.MethodsOne hundred and fifty brain tumor patients treated with RT ± CT or CT alone completed a neurocognitive assessment and provided a blood sample for genotyping. We genotyped genes/SNPs in these pathways: (i) LOAD risk/inflammation/cholesterol transport, (ii) dopamine regulation, (iii) myelin regulation, (iv) DNA repair, (v) blood–brain barrier disruption, (vi) cell cycle regulation, and (vii) response to oxidative stress. White matter (WM) abnormalities were rated on brain MRIs.ResultsMultivariable linear regression analysis with Bayesian shrinkage estimation of SNP effects, adjusting for relevant demographic, disease, and treatment variables, indicated strong associations (posterior association summary [PAS] ≥ 0.95) among tests of attention, executive functions, and memory and 33 SNPs in genes involved in: LOAD/inflammation/cholesterol transport (eg, PDE7A, IL-6), dopamine regulation (eg, DRD1, COMT), myelin repair (eg, TCF4), DNA repair (eg, RAD51), cell cycle regulation (eg, SESN1), and response to oxidative stress (eg, GSTP1). The SNPs were not significantly associated with WM abnormalities.ConclusionThis novel study suggests that polymorphisms in genes involved in aging and inflammation, dopamine, myelin and cell cycle regulation, and DNA repair and response to oxidative stress may be associated with cognitive outcome in patients with brain tumors.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 995
Author(s):  
Xiaoyan Hou ◽  
Lijun Qiao ◽  
Ruijuan Liu ◽  
Xuechao Han ◽  
Weifang Zhang

Persistent infection of high-risk human papillomavirus (HR-HPV) plays a causal role in cervical cancer. Regulator of chromosome condensation 1 (RCC1) is a critical cell cycle regulator, which undergoes a few post-translational modifications including phosphorylation. Here, we showed that serine 11 (S11) of RCC1 was phosphorylated in HPV E7-expressing cells. However, S11 phosphorylation was not up-regulated by CDK1 in E7-expressing cells; instead, the PI3K/AKT/mTOR pathway promoted S11 phosphorylation. Knockdown of AKT or inhibition of the PI3K/AKT/mTOR pathway down-regulated phosphorylation of RCC1 S11. Furthermore, S11 phosphorylation occurred throughout the cell cycle, and reached its peak during the mitosis phase. Our previous data proved that RCC1 was necessary for the G1/S cell cycle progression, and in the present study we showed that the RCC1 mutant, in which S11 was mutated to alanine (S11A) to mimic non-phosphorylation status, lost the ability to facilitate G1/S transition in E7-expressing cells. Moreover, RCC1 S11 was phosphorylated by the PI3K/AKT/mTOR pathway in HPV-positive cervical cancer SiHa and HeLa cells. We conclude that S11 of RCC1 is phosphorylated by the PI3K/AKT/mTOR pathway and phosphorylation of RCC1 S11 facilitates the abrogation of G1 checkpoint in HPV E7-expressing cells. In short, our study explores a new role of RCC1 S11 phosphorylation in cell cycle regulation.


2005 ◽  
Vol 119 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Gerrit T. S. Beemster ◽  
Steven Vercruysse ◽  
Lieven De Veylder ◽  
Martin Kuiper ◽  
Dirk Inzé

2007 ◽  
Vol 21 (10) ◽  
pp. 2334-2349 ◽  
Author(s):  
Masashi Takano ◽  
Zhenxiao Lu ◽  
Tomoko Goto ◽  
Luca Fusi ◽  
Jenny Higham ◽  
...  

Abstract Differentiation of human endometrial stromal cells (HESCs) into decidual cells is associated with induction of the forkhead transcription factor forkhead box O1A (FOXO1). We performed a genomic screen to identify decidua-specific genes under FOXO1 control. Primary HESCs were transfected with small interfering RNA targeting FOXO1 or with nontargeting control small interfering RNA before treatment with a cAMP analogue and the progestin, medroxyprogesterone acetate for 72 h. Total RNA was processed for whole genome analysis using high-density oligonucleotide arrays. We identified 3405 significantly regulated genes upon decidualization of HESCs, 507 (15.3%) of which were aberrantly expressed upon FOXO1 knockdown. Among the most up-regulated FOXO1-dependent transcriptional targets were WNT signaling-related genes (WNT4, WNT16 ), the insulin receptor (INSR), differentiation markers (PRL, IGFBP1, and LEFTY2), and the cyclin-dependent kinase inhibitor p57Kip2 (CDKN1C). Analysis of FOXO1-dependent down-regulated genes uncovered several factors involved in cell cycle regulation, including CCNB1, CCNB2, MCM5, CDC2 and NEK2. Cell viability assay and cell cycle analysis demonstrated that FOXO1 silencing promotes proliferation of differentiating HESCs. Using a glutathione-S-transferase pull-down assay, we confirmed that FOXO1 interacts with progesterone receptor, irrespectively of the presence of ligand. In agreement, knockdown of PR disrupted the regulation of FOXO1 target genes involved in differentiation (IGFBP1, PRL, and WNT4) and cell cycle regulation (CDKN1, CCNB2 and CDC2) in HESCs treated with either cAMP plus medroxyprogesterone acetate or with cAMP alone. Together, the data demonstrate that FOXO1 engages in transcriptional cross talk with progesterone receptor to coordinate cell cycle regulation and differentiation of HESCs.


Sarcoma ◽  
2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Krithi Rao-Bindal ◽  
Eugenie S. Kleinerman

The role of genetic mutations in the development of osteosarcoma, such as alterations in p53 and Rb, is well understood. However, the significance of epigenetic mechanisms in the progression of osteosarcoma remains unclear and is increasingly being investigated. Recent evidence suggests that epigenetic alterations such as methylation and histone modifications of genes involved in cell cycle regulation and apoptosis may contribute to the pathogenesis of this tumor. Importantly, understanding the molecular mechanisms of regulation of these pathways may give insight into novel therapeutic strategies for patients with osteosarcoma. This paper serves to summarize the described epigenetic mechanisms in the tumorigenesis of osteosarcoma, specifically those pertaining to apoptosis and cell cycle regulation.


2022 ◽  
Vol 11 ◽  
Author(s):  
Zhihong Gong ◽  
Mary E. Platek ◽  
Cathee Till ◽  
Phyllis J. Goodman ◽  
Catherine M. Tangen ◽  
...  

Study of polymorphisms in genes related to the generation and removal of oxidative stress and repair of oxidative DNA damage will lead to new insights into the genetic basis of prostate cancer. In the Prostate Cancer Prevention Trial (PCPT), a double-blind, randomized controlled trial testing finasteride versus placebo for prostate cancer prevention, we intend to investigate the role of oxidative stress/DNA repair mechanisms in prostate cancer etiology and whether these polymorphisms modify prostate cancer risk by interacting with antioxidant status in both placebo and finasteride arms. We evaluated associations of selected candidate polymorphisms in genes in these pathways, and interactions with pre-diagnostic serum antioxidants, and the risk of prostate cancer among 1,598 cases and 1,706 frequency-matched controls enrolled in the PCPT. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using multivariable-adjusted logistic regression models. While there were no statistically significant associations observed in the placebo arm, several SNPs were associated with prostate cancer in the finasteride arm. Specifically, APEX1-rs1760944 was associated with increased risk of total prostate cancer (per minor allele: p-trend=0.04). OGG1-rs1052133 was positively (CG/GG vs. CC: OR=1.32, 95% CI: 1.01-1.73) and NOS3-rs1799983 was inversely (per minor allele: p-trend=0.04) associated with risk of low-grade prostate cancer. LIG3-rs1052536 and XRCC1-rs25489 were suggestively associated with reduced risk of high-grade prostate cancer (per minor allele: both p-trend=0.04). In the placebo arm, significant associations were observed among men with higher serum lycopene for APEX1-rs1760944 and NQO1-rs1800566, or higher serum β-cryptoxanthin for ERCC4-rs1800067. In the finasteride arm, stronger associations were observed among men with lower serum lycopene for NOS3-rs1799983, higher serum α-carotene, β-carotene, and β-cryptoxanthin for LIG3-rs1052536, or lower serum retinol for SOD2-rs1799725. These results suggest that germline variations in oxidative stress and DNA repair pathways may contribute to prostate carcinogenesis and that these associations may differ by intraprostatic sex steroid hormone status and be further modified by antioxidant status. Findings provide insights into the complex role of gene, gene-antioxidant and -finasteride interactions in prostate cancer etiology, and thus may lead to the development of preventative strategies.


Sign in / Sign up

Export Citation Format

Share Document