scholarly journals Citrus Naringenin Increases Neuron Survival in Optic Nerve Crush Injury Model by Inhibiting JNK-JUN Pathway

2021 ◽  
Vol 23 (1) ◽  
pp. 385
Author(s):  
Jie Chen ◽  
Hui Li ◽  
Changming Yang ◽  
Yinjia He ◽  
Tatsuo Arai ◽  
...  

Traumatic nerve injury activates cell stress pathways, resulting in neuronal death and loss of vital neural functions. To date, there are no available neuroprotectants for the treatment of traumatic neural injuries. Here, we studied three important flavanones of citrus components, in vitro and in vivo, to reveal their roles in inhibiting the JNK (c-Jun N-terminal kinase)-JUN pathway and their neuroprotective effects in the optic nerve crush injury model, a kind of traumatic nerve injury in the central nervous system. Results showed that both neural injury in vivo and cell stress in vitro activated the JNK-JUN pathway and increased JUN phosphorylation. We also demonstrated that naringenin treatment completely inhibited stress-induced JUN phosphorylation in cultured cells, whereas nobiletin and hesperidin only partially inhibited JUN phosphorylation. Neuroprotection studies in optic nerve crush injury mouse models revealed that naringenin treatment increased the survival of retinal ganglion cells after traumatic optic nerve injury, while the other two components had no neuroprotective effect. The neuroprotection effect of naringenin was due to the inhibition of JUN phosphorylation in crush-injured retinal ganglion cells. Therefore, the citrus component naringenin provides neuroprotection through the inhibition of the JNK-JUN pathway by inhibiting JUN phosphorylation, indicating the potential application of citrus chemical components in the clinical therapy of traumatic optic nerve injuries.

2003 ◽  
Vol 20 (3) ◽  
pp. 297-307 ◽  
Author(s):  
Philip Rosenstiel ◽  
Peter Schramm ◽  
Stefan Isenmann ◽  
Stefan Brecht ◽  
Christian Eickmeier ◽  
...  

2017 ◽  
Vol 162 ◽  
pp. 97-103 ◽  
Author(s):  
Zhen Puyang ◽  
Hai-Qing Gong ◽  
Shi-Gang He ◽  
John B. Troy ◽  
Xiaorong Liu ◽  
...  

2009 ◽  
Vol 89 (1) ◽  
pp. 32-41 ◽  
Author(s):  
Guillermo Parrilla-Reverter ◽  
Marta Agudo ◽  
Paloma Sobrado-Calvo ◽  
Manuel Salinas-Navarro ◽  
María P. Villegas-Pérez ◽  
...  

2020 ◽  
Author(s):  
Marianne Groleau ◽  
Mojtaba Nazari-Ahangarkolaee ◽  
Matthieu P. Vanni ◽  
Jacqueline L. Higgins ◽  
Anne-Sophie Vézina Bédard ◽  
...  

AbstractAs the residual vision following a traumatic optic nerve injury can spontaneously recover over time, we explored the plasticity of cortical networks during the early post-optic nerve crush (ONC) phase. Using in vivo wide-field calcium imaging on awake Thy1-GCaMP6s mice, we characterized resting state and evoked cortical activity before, during, and 30 days after ONC. The recovery of monocular visual acuity and depth perception was evaluated at the same time points. Cortical responses to an LED flash decreased in the contralateral hemisphere in the primary visual cortex and in the secondary visual areas following the ONC, but was partially rescued between 3 and 5 days post-ONC, remaining stable thereafter. The connectivity between visual and non-visual regions was disorganized after the crush, as shown by a decorrelation, but correlated activity was restored 30 days after the injury. The number of surviving retinal ganglion cells dramatically dropped and remained low. At the behavioral level, the ONC resulted in visual acuity loss on the injured side and an increase in visual acuity with the non-injured eye. In conclusion, our results show a reorganization of connectivity between visual and associative cortical areas after an ONC, which is indicative of spontaneous cortical plasticity.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Marianne Groleau ◽  
Mojtaba Nazari-Ahangarkolaee ◽  
Matthieu P. Vanni ◽  
Jacqueline L. Higgins ◽  
Anne-Sophie Vézina Bédard ◽  
...  

AbstractAs the residual vision following a traumatic optic nerve injury can spontaneously recover over time, we explored the spontaneous plasticity of cortical networks during the early post-optic nerve crush (ONC) phase. Using in vivo wide-field calcium imaging on awake Thy1-GCaMP6s mice, we characterized resting state and evoked cortical activity before, during, and 31 days after ONC. The recovery of monocular visual acuity and depth perception was evaluated in parallel. Cortical responses to an LED flash decreased in the contralateral hemisphere in the primary visual cortex and in the secondary visual areas following the ONC, but was partially rescued between 3 and 5 days post-ONC, remaining stable thereafter. The connectivity between visual and non-visual regions was disorganized after the crush, as shown by a decorrelation, but correlated activity was restored 31 days after the injury. The number of surviving retinal ganglion cells dramatically dropped and remained low. At the behavioral level, the ONC resulted in visual acuity loss on the injured side and an increase in visual acuity with the non-injured eye. In conclusion, our results show a reorganization of connectivity between visual and associative cortical areas after an ONC, which is indicative of spontaneous cortical plasticity.


Sign in / Sign up

Export Citation Format

Share Document