scholarly journals Ectopic Expression of FVIII in HPCs and MSCs Derived from hiPSCs with Site-Specific Integration of ITGA2B Promoter-Driven BDDF8 Gene in Hemophilia A

2022 ◽  
Vol 23 (2) ◽  
pp. 623
Author(s):  
Junya Zhao ◽  
Miaojin Zhou ◽  
Zujia Wang ◽  
Lingqian Wu ◽  
Zhiqing Hu ◽  
...  

Hemophilia A (HA) is caused by mutations in the coagulation factor VIII (FVIII) gene (F8). Gene therapy is a hopeful cure for HA; however, FVIII inhibitors formation hinders its clinical application. Given that platelets promote coagulation via locally releasing α-granule, FVIII ectopically expressed in platelets has been attempted, with promising results for HA treatment. The B-domain-deleted F8 (BDDF8), driven by a truncated ITGA2B promoter, was targeted at the ribosomal DNA (rDNA) locus of HA patient-specific induced pluripotent stem cells (HA-iPSCs). The F8-modified, human induced pluripotent stem cells (2bF8-iPSCs) were differentiated into induced hematopoietic progenitor cells (iHPCs), induced megakaryocytes (iMKs), and mesenchymal stem cells (iMSCs), and the FVIII expression was detected. The ITGA2B promoter-driven BDDF8 was site-specifically integrated into the rDNA locus of HA-iPSCs. The 2bF8-iPSCs were efficiently differentiated into 2bF8-iHPCs, 2bF8-iMKs, and 2bF8-iMSCs. FVIII was 10.31 ng/106 cells in lysates of 2bF8-iHPCs, compared to 1.56 ng/106 cells in HA-iHPCs, and FVIII was 3.64 ng/106 cells in 2bF8-iMSCs lysates, while 1.31 ng/106 cells in iMSCs with CMV-driven BDDF8. Our results demonstrated a high expression of FVIII in iHPCs and iMSCs derived from hiPSCs with site-specific integration of ITGA2B promoter-driven BDDF8, indicating potential clinical prospects of this platelet-targeted strategy for HA gene therapy.

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Guang-Yin Peng ◽  
Yang Lin ◽  
Jing-Jing Li ◽  
Ying Wang ◽  
Hao-Yue Huang ◽  
...  

Vascular disorders are complex diseases with high morbidity and mortality. Among them, the dilated macrovascular diseases (MVD), such as aortic aneurysm and aortic dissection, have presented a huge threat to human health. The pathogenesis of vascular diseases is mostly associated with property alteration of vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs). Studies have confirmed that induced pluripotent stem cells (iPSCs) can be proliferated and differentiated into other somatic cells, such as VECs and VSMCs. And patient-specific cells could provide detailed human-associated information in regard to pathogenesis or drug responses. In addition, differentiated ECs from iPSC have been widely used in disease modeling as a cell therapy. In this review, we mainly discussed the application of hiPSCs in investigating the pathological mechanism of different inherited vascular diseases and provide a comprehensive understanding of hiPSCs in the field of clinical diagnosis and gene therapy.


Author(s):  
Liyan Qiu ◽  
Mi Xie ◽  
Miaojin Zhou ◽  
Xionghao Liu ◽  
Zhiqing Hu ◽  
...  

Hemophilia A (HA), an X-linked recessive congenital bleeding disorder, affects 80%–85% of patients with hemophilia. Nearly half of severe cases of hemophilia are caused by a 0.6-Mb genomic inversion (Inv22) that disrupts F8. Although viral-based gene therapy has shown therapeutic effects for hemophilia B (HB), this promising approach is not applicable for HA at the present stage; this limitation is mainly due to the large size of F8 cDNA, which far exceeds the adeno-associated virus (AAV) packaging capacity. We previously reported an in situ genetic correction of Inv22 in HA patient-specific induced pluripotent stem cells (HA-iPSCs) by using TALENs. We also investigated an alternative strategy for targeted gene addition, in which cDNA of the B-domain deleted F8 (BDDF8) was targeted at the rDNA locus of HA-iPSCs using TALENickases to restore FVIII function. Mesenchymal stem cells (MSCs) have low immunogenicity and can secrete FVIII under physiological conditions; in this study, MSCs were differentiated from F8-corrected iPSCs, BDDF8-iPSCs, and HA-iPSCs. Differentiated MSCs were characterized, and FVIII expression efficacy in MSCs was verified in vitro. The three types of MSCs were introduced into HA mice via intravenous injection. Long-term engraftment with restoration of FVIII function and phenotypic rescue was observed in HA mice transplanted with F8-corrected iMSCs and BDDF8-iMSCs. Our findings suggest that ex vivo gene therapy using iMSCs derived from F8-modified iPSCs can be feasible, effective, and promising for the clinical translation of therapeutic gene editing of HA and other genetic birth defects, particularly those that involve large sequence variants.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 699
Author(s):  
Agnieszka Fus-Kujawa ◽  
Barbara Mendrek ◽  
Anna Trybus ◽  
Karolina Bajdak-Rusinek ◽  
Karolina L. Stepien ◽  
...  

Induced pluripotent stem cells (iPSCs) are defined as reprogrammed somatic cells exhibiting embryonic stem cell characteristics. Since their discovery in 2006, efforts have been made to utilize iPSCs in clinical settings. One of the promising fields of medicine, in which genetically patient-specific stem cells may prove themselves useful, is gene therapy. iPSCs technology holds potential in both creating models of genetic diseases and delivering therapeutic agents into the organism via auto-transplants, which reduces the risk of rejection compared to allotransplants. However, in order to safely administer genetically corrected stem cells into patients’ tissues, efforts must be made to establish stably pluripotent stem cells and reduce the risk of insertional tumorigenesis. In order to achieve this, optimal reprogramming factors and vectors must be considered. Therefore, in this review, the molecular bases of reprogramming safe iPSCs for clinical applications and recent attempts to translate iPSCs technology into the clinical setting are discussed.


Author(s):  
Marisa Cappella ◽  
Sahar Elouej ◽  
Maria Grazia Biferi

The reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) represents a major advance for the development of human disease models. The emerging of this technique fostered the concept of “disease in a dish,” which consists into the generation of patient-specific models in vitro. Currently, iPSCs are used to study pathological molecular mechanisms caused by genetic mutations and they are considered a reliable model for high-throughput drug screenings. Importantly, precision-medicine approaches to treat monogenic disorders exploit iPSCs potential for the selection and validation of lead candidates. For example, antisense oligonucleotides (ASOs) were tested with promising results in myoblasts or motor neurons differentiated from iPSCs of patients affected by either Duchenne muscular dystrophy or Amyotrophic lateral sclerosis. However, the use of iPSCs needs additional optimization to ensure translational success of the innovative strategies based on gene delivery through adeno associated viral vectors (AAV) for these diseases. Indeed, to establish an efficient transduction of iPSCs with AAV, several aspects should be optimized, including viral vector serotype, viral concentration and timing of transduction. This review will outline the use of iPSCs as a model for the development and testing of gene therapies for neuromuscular and motor neuron disorders. It will then discuss the advantages for the use of this versatile tool for gene therapy, along with the challenges associated with the viral vector transduction of iPSCs.


Life Sciences ◽  
2014 ◽  
Vol 108 (1) ◽  
pp. 22-29 ◽  
Author(s):  
Bei Jia ◽  
Shen Chen ◽  
Zhiju Zhao ◽  
Pengfei Liu ◽  
Jinglei Cai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document