scholarly journals HDAC2 Is Involved in the Regulation of BRN3A in Melanocytes and Melanoma

2022 ◽  
Vol 23 (2) ◽  
pp. 849
Author(s):  
Markus V. Heppt ◽  
Anja Wessely ◽  
Eva Hornig ◽  
Claudia Kammerbauer ◽  
Saskia A. Graf ◽  
...  

The neural crest transcription factor BRN3A is essential for the proliferation and survival of melanoma cells. It is frequently expressed in melanoma but not in normal melanocytes or benign nevi. The mechanisms underlying the aberrant expression of BRN3A are unknown. Here, we investigated the epigenetic regulation of BRN3A in melanocytes and melanoma cell lines treated with DNA methyltransferase (DNMT), histone acetyltransferase (HAT), and histone deacetylase (HDAC) inhibitors. DNMT and HAT inhibition did not significantly alter BRN3A expression levels, whereas panHDAC inhibition by trichostatin A led to increased expression. Treatment with the isoform-specific HDAC inhibitor mocetinostat, but not with PCI-34051, also increased BRN3A expression levels, suggesting that class I HDACs HDAC1, HDAC2, and HDAC3, and class IV HDAC11, were involved in the regulation of BRN3A expression. Transient silencing of HDACs 1, 2, 3, and 11 by siRNAs revealed that, specifically, HDAC2 inhibition was able to increase BRN3A expression. ChIP-Seq analysis uncovered that HDAC2 inhibition specifically increased H3K27ac levels at a distal enhancer region of the BRN3A gene. Altogether, our data suggest that HDAC2 is a key epigenetic regulator of BRN3A in melanocytes and melanoma cells. These results highlight the importance of epigenetic mechanisms in regulating melanoma oncogenes.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4150-4150
Author(s):  
Ashakumary Lakshmikuttyamma ◽  
Stuart Scott ◽  
C. Ronald Geyer ◽  
John F. DeCoteau

Abstract Re-expression of hypermethylated tumor suppressor genes using epigenetic modifiers, such as DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors, occurs by a mechanism whereby promoter demethylation is the dominant event. In support of this model, we found that the DNMT inhibitor 5-Aza-2-deoxycytidine (decitabine) induces expression of the tumor suppressor gene p15INK4B (p15) in AML cells with hypermethylated p15 promoters. Re-expression of p15 by decitabine is associated with decreases in p15 promoter methylation and histone H3 lysine 9 (H3K9) methylation and increases in H3K9 acetylation. DNA methylation is linked to H3K9 methylation through the DNA methyl binding protein MeCP2, which associates with DNMTs and H3K9 methyltransferases. Using chromatin immunoprecipitaton (ChIP) assays, we confirmed that MeCP2, DNMT1 and the H3K9 methylatransferase SUV39H1 interact with the methylated p15 promoter and that this interaction is reduced by decitabine. To determine whether promoter demethylation is also dominant to H3K9 demethylation, we monitored p15 re-expression in the presence of SUV39H1 shRNA alone and in combination with decitabine. SUV39H1 shRNA induces p15 expression and H3K9 demethylation, however it does not affect p15 promoter methylation. These results are in contrast to the HDAC inhibitor trichostatin A (TSA), which cannot induce p15 re-expression. SUV39H1 shRNA induced p15 expression and H3K9 demethylation are also enhanced by co-treatment with decitabine or TSA. Surprisingly, co-treatment with decitabine and SUV39H1 shRNA partially reverses decitabine induced promoter demethylation. Using ChIP assays we show that SUV39H1 shRNA increases the amount of the histone H3K9 dimethytransferase G9a and DNMT1 associated with the p15 promoter. Increased levels of G9a at the p15 promoter would enhance promoter methylation since G9a stimulates DNMT1 activity. Our results demonstrate that hypermethylated p15 can be reactivated in AML cells by an initial event that involves H3K9 demethylation. In addition, we found that the SUV39H1 inhibitor chaetocin induces p15 in AML cells with hypermethylated p15 promoters. Therefore, H3K9 methylatransferases represent novel therapeutic targets for developing inhibitors to reactivate the expression of hypermethylated genes.


2016 ◽  
Vol 28 (6) ◽  
pp. 824 ◽  
Author(s):  
M. Saini ◽  
N. L. Selokar ◽  
H. Agrawal ◽  
S. K. Singla ◽  
M. S. Chauhan ◽  
...  

We examined the effects of treating buffalo skin fibroblast donor cells with trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, and 5-aza-2′-deoxycytidine (5azadC), a DNA methyltransferase (DNMT) inhibitor, on the cells and embryos produced by hand-made cloning. Treatment of donor cells with TSA or 5azadC resulted in altered expression levels of the HDAC1, DNMT1, DNMT3a, P53, CASPASE3 and CASPASE9 genes and global levels of acetylation of lysine at position 9 or 14 in histone 3 (H3K9/14ac), acetylation of lysine at position 5 in histone 4 (H4K5ac), acetylation of lysine at position 18 in histone 3 (H3K18ac) and tri-methylation of lysine at position 27 in histone 3 (H3K27me3). Moreover, global levels of DNA methylation and activity of DNMT1 and HDAC1 were decreased, while global acetylation of H3 and H3K9 was significantly increased in comparison to untreated cells. Simultaneous treatment of donor cells with TSA (50 nM) and 5azadC (7.5 nM) resulted in higher in vitro development to the blastocyst stage, reduction of the apoptotic index and the global level of H3K27 me3 and altered expression levels of HDAC1, P53, CASPASE3, CASPASE9 and DNMT3a in cloned blastocysts. Transfer of cloned embryos produced with donor cells treated with TSA led to the birth of a calf that survived for 21 days. These results show that treatment of buffalo donor cells with TSA and 5azadC improved developmental competence and quality of cloned embryos and altered their epigenetic status and gene expression, and that these beneficial effects were mediated by a reduction in DNA and histone methylation and an increase in histone acetylation in donor cells.


2021 ◽  
Vol 22 (11) ◽  
pp. 5516
Author(s):  
Qiting Zhang ◽  
Ziyan Wang ◽  
Xinyuan Chen ◽  
Haoxiang Qiu ◽  
Yifan Gu ◽  
...  

Epigenetic therapy using histone deacetylase (HDAC) inhibitors has become an attractive project in new drug development. However, DNA methylation and histone acetylation are important epigenetic ways to regulate the occurrence and development of leukemia. Given previous studies, N-(2-aminophenyl)benzamide acridine (8a), as a histone deacetylase 1 (HDAC1) inhibitor, induces apoptosis and shows significant anti-proliferative activity against histiocytic lymphoma U937 cells. HDAC1 plays a role in the nucleus, which we confirmed by finding that 8a entered the nucleus. Subsequently, we verified that 8a mainly passes through the endogenous (mitochondrial) pathway to induce cell apoptosis. From the protein interaction data, we found that 8a also affected the expression of DNA methyltransferase 1 (DNMT1). Therefore, an experiment was performed to assess the binding of 8a to DNMT1 at the molecular and cellular levels. We found that the binding strength of 8a to DNMT1 enhanced in a dose-dependent manner. Additionally, 8a inhibits the expression of DNMT1 mRNA and its protein. These findings suggested that the anti-proliferative and pro-apoptotic activities of 8a against leukemia cells were achieved by targeting HDAC1 and DNMT1.


2021 ◽  
Vol 28 ◽  
Author(s):  
Eftiola Pojani ◽  
Daniela Barlocco

: Histone acetylation balance is one epigenetic mechanism controlling gene expression associated with disease progression. It has been observed that histone deacetylase 10 (HDAC-10) isozyme contributes to the chemotherapy resistance; in addition, the poor clinical outcome observed in patients with aggressive solid tumors, such as neuroblastoma, has been associated with its overexpression. Moreover, HDAC-10 selective inhibition suppresses the autophagic response, thus providing an improved risk-benefit profile compared to cytotoxic cancer chemotherapy drugs. On these bases, HDAC-10 is becoming an emerging target for drug design. Due to the rapid progress in the development of next-generation HDAC inhibitors, this review article aims to provide an overview on novel selective or dual HDAC-8/10 inhibitors, as new leads for cancer chemotherapy, able to avoid the severe side-effects of several actual approved “pan” HDAC inhibitors. A literature search was conducted in MedLine, PubMed, Caplus, SciFinder Scholar databases from 2015 to the present. Since the disclosure that the HDAC-6 inhibitor Tubastatin A was able to bind HDAC-10 efficiently, several related analogues were synthesized and tested. Both tricyclic (25-30) and bicyclic (31-42) derivatives were considered. The best pharmacological profile was shown by 36 (HDAC-10 pIC50 = 8.4 and pIC50 towards Class I HDACs from 5.2–6.4). In parallel, based on the evidence that high levels of HDAC-8 are a marker of poor prognosis in neuroblastoma treatment, dual HDAC-8/10 inhibitors were designed. The hydroxamic acid TH34 (HDAC-8 and 10 IC50 = 1.9 µM and 7.7 µM, respectively) and the hybrid derivatives 46d, 46e and 46g were the most promising both in terms of potency and selectivity. Literature surveys indicate several structural requirements for inhibitory potency and selectivity towards HDAC-10, e.g., electrostatic and/or hydrogen bond interactions with E274 and complementarity to the P(E,A) CE motif helix.


2018 ◽  
Vol 399 (8) ◽  
pp. 821-836 ◽  
Author(s):  
Panagiotis G. Adamopoulos ◽  
Panagiotis Tsiakanikas ◽  
Andreas Scorilas

AbstractGastrointestinal (GI) malignancies represent a wide spectrum of diseases of the GI tract and its accessory digestive organs, including esophageal (EC), gastric (GC), hepatocellular, pancreatic (PC) and colorectal cancers (CRC). Malignancies of the GI system are responsible for nearly 30% of cancer-related morbidity and approximately 40% of cancer-related mortality, worldwide. For this reason, the discovery of novel prognostic biomarkers that can efficiently provide a better prognosis, risk assessment and prediction of treatment response is an imperative need. Human kallikrein-related peptidases (KLKs) are a subgroup of trypsin and chymotrypsin-like serine peptidases that have emerged as promising prognosticators for many human types of cancer, being aberrantly expressed in cancerous tissues. The aberrant expression ofKLKsin human malignancies is often regulated byKLK/microRNAs (miRNAs) interactions, as many miRNAs have been found to targetKLKsand therefore alter their expression levels. The biomarker utility ofKLKshas been elucidated not only in endocrine-related human malignancies, including those of the prostate and breast, but also in GI malignancies. The main purpose of this review is to summarize the existing information regarding the prognostic significance of KLKs in major types of GI malignancies and highlight the regulatory role of miRNAs on the expression levels ofKLKsin these types of cancer.


INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (06) ◽  
pp. 5-15
Author(s):  
S.S Mahajan ◽  
◽  
A Chavan

Histone deacetylases (HDACs) are critical in regulating gene expression and transcription. They also play a fundamental role in regulating cellular activities such as cell proliferation, survival and differentiation. Inhibition of histone deacetylases has generated many fascinating results including a new strategy in human cancer therapy. Suberoylanilide hydroxamic acid (SAHA) and romidepsin are the two drugs approved by US FDA for the treatment of cutaneous T-cell lymphoma. The HDAC inhibitors (HDACIs) like trichostatin A and SAHA are also emerging as new promising drugs for various conditions like rheumatoid arthritis, colitis, systemic lupus erythematosus and CNS disorders. This review, along with chemical classification of HDACIs, emphasizes on the therapeutic potential of various HDACIs against different diseases.


2019 ◽  
Vol 20 (7) ◽  
pp. 1605 ◽  
Author(s):  
Jonathan Iaconelli ◽  
Lucius Xuan ◽  
Rakesh Karmacharya

Recent studies show that histone deacetylase 6 (HDAC6) has important roles in the human brain, especially in the context of a number of nervous system disorders. Animal models of neurodevelopmental, neurodegenerative, and neuropsychiatric disorders show that HDAC6 modulates important biological processes relevant to disease biology. Pan-selective histone deacetylase (HDAC) inhibitors had been studied in animal behavioral assays and shown to induce synaptogenesis in rodent neuronal cultures. While most studies of HDACs in the nervous system have focused on class I HDACs located in the nucleus (e.g., HDACs 1,2,3), recent findings in rodent models suggest that the cytoplasmic class IIb HDAC, HDAC6, plays an important role in regulating mood-related behaviors. Human studies suggest a significant role for synaptic dysfunction in the prefrontal cortex (PFC) and hippocampus in depression. Studies of HDAC inhibitors (HDACi) in human neuronal cells show that HDAC6 inhibitors (HDAC6i) increase the acetylation of specific lysine residues in proteins involved in synaptogenesis. This has led to the hypothesis that HDAC6i may modulate synaptic biology not through effects on the acetylation of histones, but by regulating acetylation of non-histone proteins.


Sign in / Sign up

Export Citation Format

Share Document