scholarly journals Intrusion Detection in IoT Networks Using Deep Learning Algorithm

Information ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 279 ◽  
Author(s):  
Bambang Susilo ◽  
Riri Fitri Sari

The internet has become an inseparable part of human life, and the number of devices connected to the internet is increasing sharply. In particular, Internet of Things (IoT) devices have become a part of everyday human life. However, some challenges are increasing, and their solutions are not well defined. More and more challenges related to technology security concerning the IoT are arising. Many methods have been developed to secure IoT networks, but many more can still be developed. One proposed way to improve IoT security is to use machine learning. This research discusses several machine-learning and deep-learning strategies, as well as standard datasets for improving the security performance of the IoT. We developed an algorithm for detecting denial-of-service (DoS) attacks using a deep-learning algorithm. This research used the Python programming language with packages such as scikit-learn, Tensorflow, and Seaborn. We found that a deep-learning model could increase accuracy so that the mitigation of attacks that occur on an IoT network is as effective as possible.

Technologies ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 14
Author(s):  
James Dzisi Gadze ◽  
Akua Acheampomaa Bamfo-Asante ◽  
Justice Owusu Agyemang ◽  
Henry Nunoo-Mensah ◽  
Kwasi Adu-Boahen Opare

Software-Defined Networking (SDN) is a new paradigm that revolutionizes the idea of a software-driven network through the separation of control and data planes. It addresses the problems of traditional network architecture. Nevertheless, this brilliant architecture is exposed to several security threats, e.g., the distributed denial of service (DDoS) attack, which is hard to contain in such software-based networks. The concept of a centralized controller in SDN makes it a single point of attack as well as a single point of failure. In this paper, deep learning-based models, long-short term memory (LSTM) and convolutional neural network (CNN), are investigated. It illustrates their possibility and efficiency in being used in detecting and mitigating DDoS attack. The paper focuses on TCP, UDP, and ICMP flood attacks that target the controller. The performance of the models was evaluated based on the accuracy, recall, and true negative rate. We compared the performance of the deep learning models with classical machine learning models. We further provide details on the time taken to detect and mitigate the attack. Our results show that RNN LSTM is a viable deep learning algorithm that can be applied in the detection and mitigation of DDoS in the SDN controller. Our proposed model produced an accuracy of 89.63%, which outperformed linear-based models such as SVM (86.85%) and Naive Bayes (82.61%). Although KNN, which is a linear-based model, outperformed our proposed model (achieving an accuracy of 99.4%), our proposed model provides a good trade-off between precision and recall, which makes it suitable for DDoS classification. In addition, it was realized that the split ratio of the training and testing datasets can give different results in the performance of a deep learning algorithm used in a specific work. The model achieved the best performance when a split of 70/30 was used in comparison to 80/20 and 60/40 split ratios.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Qian Huang ◽  
Xue Wen Li

Big data is a massive and diverse form of unstructured data, which needs proper analysis and management. It is another great technological revolution after the Internet, the Internet of Things, and cloud computing. This paper firstly studies the related concepts and basic theories as the origin of research. Secondly, it analyzes in depth the problems and challenges faced by Chinese government management under the impact of big data. Again, we explore the opportunities that big data brings to government management in terms of management efficiency, administrative capacity, and public services and believe that governments should seize opportunities to make changes. Brainlike computing attempts to simulate the structure and information processing process of biological neural network. This paper firstly analyzes the development status of e-government at home and abroad, studies the service-oriented architecture (SOA) and web services technology, deeply studies the e-government and SOA theory, and discusses this based on the development status of e-government in a certain region. Then, the deep learning algorithm is used to construct the monitoring platform to monitor the government behavior in real time, and the deep learning algorithm is used to conduct in-depth mining to analyze the government's intention behavior.


2020 ◽  
Vol 10 (4) ◽  
pp. 213 ◽  
Author(s):  
Ki-Sun Lee ◽  
Jae Young Kim ◽  
Eun-tae Jeon ◽  
Won Suk Choi ◽  
Nan Hee Kim ◽  
...  

According to recent studies, patients with COVID-19 have different feature characteristics on chest X-ray (CXR) than those with other lung diseases. This study aimed at evaluating the layer depths and degree of fine-tuning on transfer learning with a deep convolutional neural network (CNN)-based COVID-19 screening in CXR to identify efficient transfer learning strategies. The CXR images used in this study were collected from publicly available repositories, and the collected images were classified into three classes: COVID-19, pneumonia, and normal. To evaluate the effect of layer depths of the same CNN architecture, CNNs called VGG-16 and VGG-19 were used as backbone networks. Then, each backbone network was trained with different degrees of fine-tuning and comparatively evaluated. The experimental results showed the highest AUC value to be 0.950 concerning COVID-19 classification in the experimental group of a fine-tuned with only 2/5 blocks of the VGG16 backbone network. In conclusion, in the classification of medical images with a limited number of data, a deeper layer depth may not guarantee better results. In addition, even if the same pre-trained CNN architecture is used, an appropriate degree of fine-tuning can help to build an efficient deep learning model.


Author(s):  
Fawziya M. Rammo ◽  
Mohammed N. Al-Hamdani

Many languages identification (LID) systems rely on language models that use machine learning (ML) approaches, LID systems utilize rather long recording periods to achieve satisfactory accuracy. This study aims to extract enough information from short recording intervals in order to successfully classify the spoken languages under test. The classification process is based on frames of (2-18) seconds where most of the previous LID systems were based on much longer time frames (from 3 seconds to 2 minutes). This research defined and implemented many low-level features using MFCC (Mel-frequency cepstral coefficients), containing speech files in five languages (English. French, German, Italian, Spanish), from voxforge.org an open-source corpus that consists of user-submitted audio clips in various languages, is the source of data used in this paper. A CNN (convolutional Neural Networks) algorithm applied in this paper for classification and the result was perfect, binary language classification had an accuracy of 100%, and five languages classification with six languages had an accuracy of 99.8%.


2021 ◽  
Author(s):  
Sidhant Idgunji ◽  
Madison Ho ◽  
Jonathan L. Payne ◽  
Daniel Lehrmann ◽  
Michele Morsilli ◽  
...  

<p>The growing digitization of fossil images has vastly improved and broadened the potential application of big data and machine learning, particularly computer vision, in paleontology. Recent studies show that machine learning is capable of approaching human abilities of classifying images, and with the increase in computational power and visual data, it stands to reason that it can match human ability but at much greater efficiency in the near future. Here we demonstrate this potential of using deep learning to identify skeletal grains at different levels of the Linnaean taxonomic hierarchy. Our approach was two-pronged. First, we built a database of skeletal grain images spanning a wide range of animal phyla and classes and used this database to train the model. We used a Python-based method to automate image recognition and extraction from published sources. Second, we developed a deep learning algorithm that can attach multiple labels to a single image. Conventionally, deep learning is used to predict a single class from an image; here, we adopted a Branch Convolutional Neural Network (B-CNN) technique to classify multiple taxonomic levels for a single skeletal grain image. Using this method, we achieved over 90% accuracy for both the coarse, phylum-level recognition and the fine, class-level recognition across diverse skeletal grains (6 phyla and 15 classes). Furthermore, we found that image augmentation improves the overall accuracy. This tool has potential applications in geology ranging from biostratigraphy to paleo-bathymetry, paleoecology, and microfacies analysis. Further improvement of the algorithm and expansion of the training dataset will continue to narrow the efficiency gap between human expertise and machine learning.</p>


2021 ◽  
Author(s):  
Donghwan Yun ◽  
Semin Cho ◽  
Yong Chul Kim ◽  
Dong Ki Kim ◽  
Kook-Hwan Oh ◽  
...  

BACKGROUND Precise prediction of contrast media-induced acute kidney injury (CIAKI) is an important issue because of its relationship with worse outcomes. OBJECTIVE Herein, we examined whether a deep learning algorithm could predict the risk of intravenous CIAKI better than other machine learning and logistic regression models in patients undergoing computed tomography. METHODS A total of 14,185 cases that underwent intravenous contrast media for computed tomography under the preventive and monitoring facility in Seoul National University Hospital were reviewed. CIAKI was defined as an increase in serum creatinine ≥0.3 mg/dl within 2 days and/or ≥50% within 7 days. Using both time-varying and time-invariant features, machine learning models, such as the recurrent neural network (RNN), light gradient boosting machine, extreme boosting machine, random forest, decision tree, support vector machine, κ-nearest neighboring, and logistic regression, were developed using a training set, and their performance was compared using the area under the receiver operating characteristic curve (AUROC) in a test set. RESULTS CIAKI developed in 261 cases (1.8%). The RNN model had the highest AUROC value of 0.755 (0.708–0.802) for predicting CIAKI, which was superior to those obtained from other machine learning models. Although CIAKI was defined as an increase in serum creatinine ≥0.5 mg/dl and/or ≥25% within 3 days, the highest performance was achieved in the RNN model with an AUROC of 0.716 (0.664–0.768). In the feature ranking analysis, albumin level was the most highly contributing factor to RNN performance, followed by time-varying kidney function. CONCLUSIONS Application of a deep learning algorithm improves the predictability of intravenous CIAKI after computed tomography, representing a basis for future clinical alarming and preventive systems.


2021 ◽  
pp. 137-147
Author(s):  
Nilay Nishant ◽  
Ashish Maharjan ◽  
Dibyajyoti Chutia ◽  
P. L. N. Raju ◽  
Ashis Pradhan

2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Sheng Huang ◽  
Xiaofei Fan ◽  
Lei Sun ◽  
Yanlu Shen ◽  
Xuesong Suo

Traditionally, the classification of seed defects mainly relies on the characteristics of color, shape, and texture. This method requires repeated extraction of a large amount of feature information, which is not efficiently used in detection. In recent years, deep learning has performed well in the field of image recognition. We introduced convolutional neural networks (CNNs) and transfer learning into the quality classification of seeds and compared them with traditional machine learning algorithms. Experiments showed that deep learning algorithm was significantly better than the machine learning algorithm with an accuracy of 95% (GoogLeNet) vs. 79.2% (SURF+SVM). We used three classifiers in GoogLeNet to demonstrate that network accuracy increases as the depth of the network increases. We used the visualization technology to obtain the feature map of each layer of the network in CNNs and used the heat map to represent the probability distribution of the inference results. As an end-to-end network, CNNs can be easily applied for automated seed manufacturing.


Sign in / Sign up

Export Citation Format

Share Document