scholarly journals Essential Oil Headspace Volatiles Prevent Invasive Box Tree Moth (Cydalima perspectalis) Oviposition—Insights from Electrophysiology and Behaviour

Insects ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 465
Author(s):  
Magdolna Olívia Szelényi ◽  
Anna Laura Erdei ◽  
Júlia Katalin Jósvai ◽  
Dalma Radványi ◽  
Bence Sümegi ◽  
...  

The box tree moth (Cydalima perspectalis Walker) is an invasive species in Europe causing severe damage both in natural and ornamental boxwood (Buxus spp.) vegetation. Pest management tactics are often based on the use of chemical insecticides, whereas environmentally-friendly control solutions are not available against this insect. The application of essential oils may provide effective protection against oviposition and subsequent larval damage. Oviposition deterrence of cinnamon, eucalyptus and lavender essential oils was tested on female C. perspectalis in behavioural bioassays. Our results indicate that all the studied essential oils may be adequate deterrents; however, cinnamon oil exhibited the strongest effect. To determine the physiologically active compounds in the headspace of the essential oils, gas chromatography coupled with electroantennography recordings were performed in parallel with gas chromatography-mass spectrometry to identify the volatile constituents. In addition, the release rates of various components from vial-wick dispensers were measured during the oviposition bioassay. These results may serve as a basis for the development of a practical and insecticide-free plant protection method against this invasive moth species.

2019 ◽  
Author(s):  
Chem Int

In this study, we determined the chemical composition and antioxidant activities of the essential oils from two different varieties of khat (Catha edulis Forsk) cultivated in Ethiopia. The essential oils were extracted by hydrodistillation using the Clevenger type apparatus, identifications of compounds were made by gas chromatography and gas chromatography-mass spectrometry (GC-MS). Seventy seven different compounds were identified from essential oils of the two different khat cultivars. The essential oils in the samples from Bahir Dar and Wendo were composed of 50 and 34 compounds, respectively. The major compound identified in khat essentials oils include: limonene, 1-phenyl-1,2-propanedione, 1-hydroxy,1-phenyl-2-propanone, camphor, (sulfurous acid)-2-propylundecyl ester, hexadecane, O-mentha-1(7), 8-dien-3-ol, heptadecane, 10-methylnonadecane, (phthalic acid)-isobutyl octadecyl ester, and tritetracontane. The antioxidant and free radical scavenging activity of the oils were assessed by means of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical assay. The scavenging activities of the oils were 23.5-23.6 μg AAE/kg of fresh khat sample.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Kamel Msaada ◽  
Nidhal Salem ◽  
Olfa Bachrouch ◽  
Slim Bousselmi ◽  
Sonia Tammar ◽  
...  

The aim of this study was to determine the chemical variability of wormwood extracts as affected by the growing region. Antioxidant and antimicrobial activities were also investigated. The essential oil composition variability ofA. absinthiumL. aerial parts collected from four different Tunisian regions was assessed by gas chromatography (GC/FID) and by gas chromatography mass spectrometry (GC/MS). In addition, total polyphenols, flavonoids, and condensed tannins as well as antioxidant, antibacterial, and antifungal activities of methanolic extract and essential oils were undertaken. Chromatographic analysis of wormwood essential oils showed the predominance of monoterpene hydrocarbons represented mainly by chamazulene. RP-HPLC analysis of wormwood methanolic extract revealed the predominance of phenolic acids. Antiradical activity was region-dependant and the methanolic extract of Bou Salem region has the strongest activity (CI50=9.38±0.82 µg/mL). Concerning the reducing power, the methanolic extract of Bou Salem, Jérissa, and Boukornine regions was more active than the positive control. Obtained results of antimicrobial activities showed that wormwood essential oil is endowed with important antibacterial activity which was strongly related to the organoleptic quality of oil which appeared strongly region-dependant.A. absinthiumL. EOs investigated are quite interesting from a pharmaceutical standpoint because of their biological activities.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Avni Hajdari ◽  
Behxhet Mustafa ◽  
Dashnor Nebija ◽  
Hyrmete Selimi ◽  
Zeqir Veselaj ◽  
...  

The principal aim of this study was to analyze the chemical composition and qualitative and quantitative variability of essential oils obtained from seven naturally grown populations of thePinus peuceGrisebach, Pinaceae in Kosovo. Plant materials were collected from three populations in the Sharri National Park and from four other populations in the Bjeshkët e Nemuna National Park, in Kosovo. Essential oils were obtained by steam distillation and analyzed by GC-FID (Gas Chromatography-Flame Ionization Detection) and GC-MS (Gas Chromatography-Mass Spectrometry). The results showed that the yield of essential oils (v/wdry weight) varied depending on the origin of population and the plant organs and ranged from 0.7 to 3.3%. In total, 51 compounds were identified. The main compounds wereα-pinene (needles: 21.6–34.9%; twigs: 11.0–24%),β-phellandrene (needles: 4.1–27.7; twigs: 29.0–49.8%), andβ-pinene (needles: 10.0–16.1; twigs: 6.9–20.7%). HCA (Hierarchical Cluster Analysis) and PCA (Principal Component Analyses) were used to assess geographical variations in essential oil composition. Statistical analysis showed that the analyzed populations are grouped in three main clusters which seem to reflect microclimatic conditions on the chemical composition of the essential oils.


1991 ◽  
Vol 46 (1-2) ◽  
pp. 111-121 ◽  
Author(s):  
W. Greenaway ◽  
J. May ◽  
T. Scaysbrook ◽  
F. R. Whatley

Abstract Propolis was analyzed by gas chromatography-mass spectrometry for both its headspace volatiles and for the less volatile components of its alcoholic extract (propolis balsam). 181 peaks were located of which 171 representing 150 compounds were identified, including 28 identified in propolis for the first time. The majority of compounds were typical of poplar bud exudate.


2011 ◽  
Vol 6 (10) ◽  
pp. 1934578X1100601 ◽  
Author(s):  
Ismail Amri ◽  
Hamrouni Lamia ◽  
Samia Gargouri ◽  
Mohsen Hanana ◽  
Mariem Mahfoudhi ◽  
...  

Essential oils isolated from needles of Pinus patula by hydrodistillation were analyzed by gas chromatography-flame ionization detection (GC-FID) and gas chromatography mass spectrometry (GC-MS). Thirty-eight compounds were identified, representing 98.3% of the total oil. The oil was rich in monoterpene hydrocarbons (62.4%), particularly α-pinene (35.2%) and β-phellandrene (19.5%). The in vitro antifungal assay showed that P. patula oil significantly inhibited the growth of 9 plant pathogenic fungi. The oil, when tested on Sinapis arvensis, Lolium rigidum, Phalaris canariensis and Trifolium campestre, completely inhibited seed germination and seedling growth of all species. Our preliminary results showed that P. patula essential oil could be valorized for the control of weeds and fungal plant diseases.


2009 ◽  
Vol 4 (11) ◽  
pp. 1934578X0900401 ◽  
Author(s):  
Amy Desautels ◽  
Kamal Biswas ◽  
Alexander Lane ◽  
Astrid Boeckelmann ◽  
Soheil S. Mahmoud

Linalool acetate, one of the major constituent of several essential oils, is heat-labile and decomposes upon exposure to the high injector temperature during gas chromatography. Here we report the development of an improved method for detection of this compound by gas chromatography mass spectrometry (GCMS) using cold on-column injection of the sample. By using this sensitive method, it has been demonstrated that a lavandin (L.x intermedia) mutant accumulates trace quantities of linalool acetate and camphor and higher amounts of cineole and borneol compared to its parent. This plant, which very likely carries a point mutation in one or more of the genes involved in essential oil production, provides a unique tool for investigating regulation of essential oil biogenesis in plants.


Sign in / Sign up

Export Citation Format

Share Document