scholarly journals A Novel Single-Stage Tandem Soft-Switching Converter with Low Input Current Distortion

Inventions ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 70
Author(s):  
Jianming Xu ◽  
Bo Qian ◽  
Muhammad Humayun

In order to improve the power factor and reduce the input current harmonics, power factor correction (PFC) converters are utilized. This paper introduces a single-stage continuous conduction mode (CCM) soft-switched power factor correction (PFC) converter with a tandem topology. The proposed topology has two operating modes, namely resonant operation mode and boost operation mode. Such a design and control realizes the zero-voltage switching (ZVS) and zero current switching (ZCS) of the power switches. The proposed topology has been introduced to reduce the total harmonic distortion (THD) of the input current further in the boost PFC converter under lower power and higher output voltage conditions. The simulation and experimental results are presented to verify the effectiveness of the performance of the proposed design and its control.

Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1340
Author(s):  
Yih-Her Yan ◽  
Hung-Liang Cheng ◽  
Chun-An Cheng ◽  
Yong-Nong Chang ◽  
Zong-Xun Wu

A novel single-switch single-stage high power factor LED driver is proposed by integrating a flyback converter, a buck–boost converter and a current balance circuit. Only an active switch and a corresponding control circuit are used. The LED power can be adjusted by the control scheme of pulse–width modulation (PWM). The flyback converter performs the function of power factor correction (PFC), which is operated at discontinuous-current mode (DCM) to achieve unity power factor and low total current harmonic distortion (THDi). The buck–boost converter regulates the dc-link voltage to obtain smooth dc voltage for the LED. The current–balance circuit applies the principle of ampere-second balance of capacitors to obtain equal current in each LED string. The steady-state analyses for different operation modes is provided, and the mathematical equations for designing component parameters are conducted. Finally, a 90-W prototype circuit with three LED strings was built and tested. Experimental results show that the current in each LED string is indeed consistent. High power factor and low THDi can be achieved. LED power is regulated from 100% to 25% rated power. Satisfactory performance has proved the feasibility of this circuit.


2004 ◽  
Vol 13 (03) ◽  
pp. 557-576
Author(s):  
CHUNG-WOOK ROH ◽  
GUN-WOO MOON ◽  
MYUNG-JOONG YOUN

This paper presents a new single-stage single-switched forward converter with magnetic coupled nondissipative snubber, which gives good power factor correction (PFC), low current harmonic distortion, and tight output voltage regulation. The proposed converter features low switch current and voltage stresses, essential for the design of a single-stage power factor correction converter. The prototype shows that the IEC1000-3-2 requirements are met satisfactorily with nearly unity power factor. This proposed converter with magnetic coupled nondissipative snubber is particularly suited for power supply applications with low power level.


2019 ◽  
Vol 17 (10) ◽  
pp. 755-761
Author(s):  
J. Stanly Jones ◽  
S. Sutha

This paper introduced new topology of sensors signal based power factor correction for street lighting systems. This class-E rectifier based on zero-current switching, to increase the bridge diode current and reduced the current harmonics, furthermore the proposed converter reduced switching losses and its noise are also reduced by this proposed system. And important of the sensor-based this system used LDR sensor and a touch sensor that type of sensors used for street lighting systems. This proposed prototype topology has the minimum requirement of passive components and power switches, it has high power factor. Finally, Simple prototype hardware tested and verified.


2004 ◽  
Vol 13 (03) ◽  
pp. 535-555 ◽  
Author(s):  
DYLAN DAH-CHUAN LU ◽  
DAVID KI-WAI CHENG ◽  
YIM-SHU LEE

In this paper, a new family of single-stage AC/DC power factor correction converters (S2PFCC), which possesses reduced voltage stress across the storage capacitor and no extra current stress on the power switch, is proposed. The converters are realized by reduced repeated power processing concept in which part of the input power is transferred to the load directly after the first power process. This results in lower storage capacitor voltage than that of previously developed S2PFCCs but maintaining high power factor. In addition, the inherent input current control allows the load current to reduce the input line current automatically when the load becomes light, preventing excessive amount of energy being stored in the storage capacitor. Although the proposed converters employed two power switches, a simple single-loop controller for the proposed S2PFCC to achieve power factor correction (PFC) and tight output regulation is also proposed. Experimental results are reported to verify the operation and concept of the new S2PFCC.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7901
Author(s):  
Qingqing He ◽  
Lei Liu ◽  
Mingyang Qiu ◽  
Quanming Luo

Active power factor correction converters are often introduced as the front stage of power electronic equipment to improve the power factor and eliminate higher harmonics. A Boost or Buck-Boost converter operating in discontinuous current mode is always adopted to achieve high power factor correction. In addition, the input current contains a large amount of higher harmonics, and a low-pass input filter is commonly adopted to filter it out. In this paper, a single-stage high-frequency AC/AC converter is taken as an example to demonstrate the design method of a passive low-pass filter. Firstly, the input side of the grid needs to meet the power factor and harmonic requirements. The preset parameters are set to a range to characterize the performance of the LC filter. The quantitative design method of input filter is proposed and summarized. Moreover, the sensitivity of the filter parameters is analyzed, providing a direction in practical applications. Preset parameters are all proved to conform to the preset range through PSIM simulation. Finally, a 130-W prototype is established to verify the correction of proposed design method. The power factor is around 0.935 and harmonic content in the input current is about 26.4%. All requirements can be satisfied.


Sign in / Sign up

Export Citation Format

Share Document