scholarly journals Iris Liveness Detection for Biometric Authentication: A Systematic Literature Review and Future Directions

Inventions ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 65
Author(s):  
Smita Khade ◽  
Swati Ahirrao ◽  
Shraddha Phansalkar ◽  
Ketan Kotecha ◽  
Shilpa Gite ◽  
...  

Biometrics is progressively becoming vital due to vulnerabilities of traditional security systems leading to frequent security breaches. Biometrics is an automated device that studies human beings’ physiological and behavioral features for their unique classification. Iris-based authentication offers stronger, unique, and contactless identification of the user. Iris liveness detection (ILD) confronts challenges such as spoofing attacks with contact lenses, replayed video, and print attacks, etc. Many researchers focus on ILD to guard the biometric system from attack. Hence, it is vital to study the prevailing research explicitly associated with the ILD to address how developing technologies can offer resolutions to lessen the evolving threats. An exhaustive survey of papers on the biometric ILD was performed by searching the most applicable digital libraries. Papers were filtered based on the predefined inclusion and exclusion criteria. Thematic analysis was performed for scrutinizing the data extracted from the selected papers. The exhaustive review now outlines the different feature extraction techniques, classifiers, datasets and presents their critical evaluation. Importantly, the study also discusses the projects, research works for detecting the iris spoofing attacks. The work then realizes in the discovery of the research gaps and challenges in the field of ILD. Many works were restricted to handcrafted methods of feature extraction, which are confronted with bigger feature sizes. The study discloses that dep learning based automated ILD techniques shows higher potential than machine learning techniques. Acquiring an ILD dataset that addresses all the common Iris spoofing attacks is also a need of the time. The survey, thus, opens practical challenges in the field of ILD from data collection to liveness detection and encourage future research.

It is very obvious that human fall due to unconsciousness is a very common health problem in every human being. With the evolution of many smart health devices, we should contribute the technological advancement of machine learning into it. Different techniques are already used in order to detect human fall detection in human beings. In this paper we have studied the patterns of falling of human through the fall detection dataset while this human was performing various motions. By understanding all these we have generated the prediction protocol which estimates the fall of a person using fall detection dataset. Machine Learning classifiers were used to predict the human fall and a comparative study of various algorithms used was developed to find out the best classifier.


2012 ◽  
pp. 13-22 ◽  
Author(s):  
João Gama ◽  
André C.P.L.F. de Carvalho

Machine learning techniques have been successfully applied to several real world problems in areas as diverse as image analysis, Semantic Web, bioinformatics, text processing, natural language processing,telecommunications, finance, medical diagnosis, and so forth. A particular application where machine learning plays a key role is data mining, where machine learning techniques have been extensively used for the extraction of association, clustering, prediction, diagnosis, and regression models. This text presents our personal view of the main aspects, major tasks, frequently used algorithms, current research, and future directions of machine learning research. For such, it is organized as follows: Background information concerning machine learning is presented in the second section. The third section discusses different definitions for Machine Learning. Common tasks faced by Machine Learning Systems are described in the fourth section. Popular Machine Learning algorithms and the importance of the loss function are commented on in the fifth section. The sixth and seventh sections present the current trends and future research directions, respectively.


Author(s):  
João Gama ◽  
André C.P.L.F. de Carvalho

Machine learning techniques have been successfully applied to several real world problems in areas as diverse as image analysis, Semantic Web, bioinformatics, text processing, natural language processing,telecommunications, finance, medical diagnosis, and so forth. A particular application where machine learning plays a key role is data mining, where machine learning techniques have been extensively used for the extraction of association, clustering, prediction, diagnosis, and regression models. This text presents our personal view of the main aspects, major tasks, frequently used algorithms, current research, and future directions of machine learning research. For such, it is organized as follows: Background information concerning machine learning is presented in the second section. The third section discusses different definitions for Machine Learning. Common tasks faced by Machine Learning Systems are described in the fourth section. Popular Machine Learning algorithms and the importance of the loss function are commented on in the fifth section. The sixth and seventh sections present the current trends and future research directions, respectively.


Author(s):  
Giovanni Semeraro ◽  
Pierpaolo Basile ◽  
Marco de Gemmis ◽  
Pasquale Lops

Exploring digital collections to find information relevant to a user’s interests is a challenging task. Information preferences vary greatly across users; therefore, filtering systems must be highly personalized to serve the individual interests of the user. Algorithms designed to solve this problem base their relevance computations on user profiles in which representations of the users’ interests are maintained. The main focus of this chapter is the adoption of machine learning to build user profiles that capture user interests from documents. Profiles are used for intelligent document filtering in digital libraries. This work suggests the exploiting of knowledge stored in machine-readable dictionaries to obtain accurate user profiles that describe user interests by referring to concepts in those dictionaries. The main aim of the proposed approach is to show a real-world scenario in which the combination of machine learning techniques and linguistic knowledge is helpful to achieve intelligent document filtering.


2022 ◽  
pp. 220-249
Author(s):  
Md Ariful Haque ◽  
Sachin Shetty

Financial sectors are lucrative cyber-attack targets because of their immediate financial gain. As a result, financial institutions face challenges in developing systems that can automatically identify security breaches and separate fraudulent transactions from legitimate transactions. Today, organizations widely use machine learning techniques to identify any fraudulent behavior in customers' transactions. However, machine learning techniques are often challenging because of financial institutions' confidentiality policy, leading to not sharing the customer transaction data. This chapter discusses some crucial challenges of handling cybersecurity and fraud in the financial industry and building machine learning-based models to address those challenges. The authors utilize an open-source e-commerce transaction dataset to illustrate the forensic processes by creating a machine learning model to classify fraudulent transactions. Overall, the chapter focuses on how the machine learning models can help detect and prevent fraudulent activities in the financial sector in the age of cybersecurity.


Author(s):  
Mercedes Barrachina ◽  
Laura Valenzuela López

Sleep disorders are related to many different diseases, and they could have a significant impact in patients' health, causing an economic impact to the society and to the national health systems. In the United States, according to information from the Center for Disease Control and Prevention, those disorders are affecting 50-70 million in the adult population. Sleep disorders are causing annually around 40,000 deaths due to cardiovascular problems, and they cost the health system more than 16 billion. In other countries, such as in Spain, those disorders affect up to 48% of the adult population. The main objective of this chapter is to review and evaluate the different machine learning techniques utilized by researchers and medical professionals to identify, assess, and characterize sleep disorders. Moreover, some future research directions are proposed considering the evaluated area.


2018 ◽  
Vol 2 (3) ◽  
pp. 228-267 ◽  
Author(s):  
Zaidi ◽  
Chandola ◽  
Allen ◽  
Sanyal ◽  
Stewart ◽  
...  

Modeling the interactions of water and energy systems is important to the enforcement of infrastructure security and system sustainability. To this end, recent technological advancement has allowed the production of large volumes of data associated with functioning of these sectors. We are beginning to see that statistical and machine learning techniques can help elucidate characteristic patterns across these systems from water availability, transport, and use to energy generation, fuel supply, and customer demand, and in the interdependencies among these systems that can leave these systems vulnerable to cascading impacts from single disruptions. In this paper, we discuss ways in which data and machine learning can be applied to the challenges facing the energy-water nexus along with the potential issues associated with the machine learning techniques themselves. We then survey machine learning techniques that have found application to date in energy-water nexus problems. We conclude by outlining future research directions and opportunities for collaboration among the energy-water nexus and machine learning communities that can lead to mutual synergistic advantage.


2018 ◽  
Author(s):  
Sibel Çimen ◽  
Abdulkerim Çapar ◽  
Dursun Ali Ekinci ◽  
Umut Engin Ayten ◽  
Bilal Ersen Kerman ◽  
...  

AbstractOligodendrocytes wrap around the axons and form the myelin. Myelin facilitates rapid neural signal transmission. Any damage to myelin disrupts neuronal communication leading to neurological diseases such as multiple sclerosis (MS). There is no cure for MS. This is, in part, due to lack of an efficient method for myelin quantification during drug screening. In this study, an image analysis based myelin sheath detection method, DeepMQ, is developed. The method consists of a feature extraction step followed by a deep learning based binary classification module. The images, which were acquired on a confocal microscope contain three channels and multiple z-sections. Each channel represents either oligodendroyctes, neurons, or nuclei. During feature extraction, 26-neighbours of each voxel is mapped onto a 2D feature image. This image is, then, fed to the deep learning classifier, in order to detect myelin. Results indicate that 93.38% accuracy is achieved in a set of fluorescence microscope images of mouse stem cell-derived oligodendroyctes and neurons. To the best of authors’ knowledge, this is the first study utilizing image analysis along with machine learning techniques to quantify myelination.


Author(s):  
Leena N ◽  
K. K. Saju

<p>Detection of nutritional deficiencies in plants is vital for improving crop productivity. Timely identification of nutrient deficiency through visual symptoms in the plants can help farmers take quick corrective action by appropriate nutrient management strategies. The application of computer vision and machine learning techniques offers new prospects in non-destructive field-based analysis for nutrient deficiency. Color and shape are important parameters in feature extraction. In this work, two different techniques are used for image segmentation and feature extraction to generate two different feature sets from the same image sets. These are then used for classification using different machine learning techniques. The experimental results are analyzed and compared in terms of classification accuracy to find the best algorithm for the two feature sets.</p>


Sign in / Sign up

Export Citation Format

Share Document