scholarly journals The Effect of the Second-Order Wave Loads on Drift Motion of a Semi-Submersible Floating Offshore Wind Turbine

2020 ◽  
Vol 8 (11) ◽  
pp. 859
Author(s):  
Thanh-Dam Pham ◽  
Hyunkyoung Shin

Floating offshore wind turbines (FOWTs) have been installed in Europe and Japan with relatively modern technology. The installation of floating wind farms in deep water is recommended because the wind speed is stronger and more stable. The design of the FOWT must ensure it is able to withstand complex environmental conditions including wind, wave, current, and performance of the wind turbine. It needs simulation tools with fully integrated hydrodynamic-servo-elastic modeling capabilities for the floating offshore wind turbines. Most of the numerical simulation approaches consider only first-order hydrodynamic loads; however, the second-order hydrodynamic loads have an effect on a floating platform which is moored by a catenary mooring system. At the difference-frequencies of the incident wave components, the drift motion of a FOWT system is able to have large oscillation around its natural frequency. This paper presents the effects of second-order wave loads to the drift motion of a semi-submersible type. This work also aimed to validate the hydrodynamic model of Ulsan University (UOU) in-house codes through numerical simulations and model tests. The NREL FAST code was used for the fully coupled simulation, and in-house codes of UOU generates hydrodynamic coefficients as the input for the FAST code. The model test was performed in the water tank of UOU.

2021 ◽  
Vol 9 (5) ◽  
pp. 543
Author(s):  
Jiawen Li ◽  
Jingyu Bian ◽  
Yuxiang Ma ◽  
Yichen Jiang

A typhoon is a restrictive factor in the development of floating wind power in China. However, the influences of multistage typhoon wind and waves on offshore wind turbines have not yet been studied. Based on Typhoon Mangkhut, in this study, the characteristics of the motion response and structural loads of an offshore wind turbine are investigated during the travel process. For this purpose, a framework is established and verified for investigating the typhoon-induced effects of offshore wind turbines, including a multistage typhoon wave field and a coupled dynamic model of offshore wind turbines. On this basis, the motion response and structural loads of different stages are calculated and analyzed systematically. The results show that the maximum response does not exactly correspond to the maximum wave or wind stage. Considering only the maximum wave height or wind speed may underestimate the motion response during the traveling process of the typhoon, which has problems in guiding the anti-typhoon design of offshore wind turbines. In addition, the coupling motion between the floating foundation and turbine should be considered in the safety evaluation of the floating offshore wind turbine under typhoon conditions.


2021 ◽  
Vol 11 (24) ◽  
pp. 11665
Author(s):  
Shi Liu ◽  
Yi Yang ◽  
Chao Wang ◽  
Yuangang Tu

Spar-type floating offshore wind turbines commonly vibrate excessively when under the coupling impact of wind and wave. The wind turbine vibration can be controlled by developing its mooring system. Thus, this study proposes a novel mooring system for the spar-type floating offshore wind turbine. The proposed mooring system has six mooring lines, which are divided into three groups, with two mooring lines in the same group being connected to the same fairlead. Subsequently, the effects of the included angle between the two mooring lines on the mooring-system’s performance are investigated. Then, these six mooring lines are connected to six independent fairleads for comparison. FAST is utilized to calculate wind turbine dynamic response. Wind turbine surge, pitch, and yaw movements are presented and analyzed in time and frequency domains to quantitatively evaluate the performances of the proposed mooring systems. Compared with the mooring system with six fairleads, the mooring system with three fairleads performed better. When the included angle was 40°, surge, pitch, and yaw movement amplitudes of the wind turbine reduced by 39.51%, 6.8%, and 12.34%, respectively, when under regular waves; they reduced by 56.08%, 25.00%, and 47.5%, respectively, when under irregular waves. Thus, the mooring system with three fairleads and 40° included angle is recommended.


Author(s):  
Yajun Ren ◽  
Vengatesan Venugopal

Abstract The complex dynamic characteristics of Floating Offshore Wind Turbines (FOWTs) have raised wider consideration, as they are likely to experience harsher environments and higher instabilities than the bottom fixed offshore wind turbines. Safer design of a mooring system is critical for floating offshore wind turbine structures for station keeping. Failure of mooring lines may lead to further destruction, such as significant changes to the platform’s location and possible collisions with a neighbouring platform and eventually complete loss of the turbine structure may occur. The present study focuses on the dynamic responses of the National Renewable Energy Laboratory (NREL)’s OC3-Hywind spar type floating platform with a NREL offshore 5-MW baseline wind turbine under failed mooring conditions using the fully coupled numerical simulation tool FAST. The platform motions in surge, heave and pitch under multiple scenarios are calculated in time-domain. The results describing the FOWT motions in the form of response amplitude operators (RAOs) and spectral densities are presented and discussed in detail. The results indicate that the loss of the mooring system firstly leads to longdistance drift and changes in platform motions. The natural frequencies and the energy contents of the platform motion, the RAOs of the floating structures are affected by the mooring failure to different degrees.


Author(s):  
Xiaohong Chen ◽  
Qing Yu

This paper presents the research in support of the development of design requirements for floating offshore wind turbines (FOWTs). An overview of technical challenges in the design of FOWTs is discussed, followed by a summary of the case studies using representative FOWT concepts. Three design concepts, including a Spar-type, a TLP-type and a Semisubmersible-type floating support structure carrying a 5-MW offshore wind turbine, are selected for the case studies. Both operational and extreme storm conditions on the US Outer Continental Shelf (OCS) are considered. A state-of-the-art simulation technique is employed to perform fully coupled aero-hydro-servo-elastic analysis using the integrated FOWT model. This technique can take into account dynamic interactions among the turbine Rotor-Nacelle Assembly (RNA), turbine control system, floating support structure and stationkeeping system. The relative importance of various design parameters and their impact on the development of design criteria are evaluated through parametric analyses. The paper also introduces the design requirements put forward in the recently published ABS Guide for Building and Classing Floating Offshore Wind Turbine Installations (ABS, 2013).


Author(s):  
Luigia Riefolo ◽  
Fernando del Jesus ◽  
Raúl Guanche García ◽  
Giuseppe Roberto Tomasicchio ◽  
Daniela Pantusa

The design methodology for mooring systems for a spar buoy wind turbine considers the influence of extreme events and wind/wave misalignments occurring in its lifetime. Therefore, the variety of wind and wave directions affects over the seakeeping and as a result the evaluation of the maxima loads acting on the spar-buoy wind turbine. In the present paper, the importance of wind/wave misalignments on the dynamic response of spar-type floating wind turbine [1] is investigated. Based on standards, International Electrotechnical Commission IEC and Det Norske Veritas DNV the design of position moorings should be carried out under extreme wind/wave loads, taking into account their misalignments with respect to the structure. In particular, DNV standard, in ‘Position mooring’ recommendations, specifies in the load cases definition, if site specific data is not available, to consider non-collinear environment to have wave towards the unit’s bow (0°) and wind 30° relative to the waves. In IEC standards, the misalignment of the wind and wave directions shall be considered to design offshore wind turbines and calculate the loads acting on the support structure. Ultimate Limit State (ULS) analyses of the OC3-Hywind spar buoy wind turbine are conducted through FAST code, a certified nonlinear aero-hydro-servo-elastic simulation tool by the National Renewable Energy Laboratory’s (NREL’s). This software was developed for use in the International Energy Agency (IEA) Offshore Code Comparison Collaborative (OC3) project, and supports NREL’s offshore 5-MW baseline turbine. In order to assess the effects of misaligned wind and wave, different wind directions are chosen, maintaining the wave loads perpendicular to the structure. Stochastic, full-fields, turbulence simulator Turbsim is used to simulate the 1-h turbulent wind field. The scope of the work is to investigate the effects of wind/wave misalignments on the station-keeping system of spar buoy wind turbine. Results are presented in terms of global maxima determined through mean up-crossing with moving average, which, then, are modelled by a Weibull distribution. Finally, extreme values are estimated depending on global maxima and fitted on Gumbel distribution. The Most Probable Maximum value of mooring line tensions is found to be influenced by the wind/wave misalignments. The present paper is organized as follows. Section ‘Introduction’, based on a literature study, gives useful information on the previous studies conducted on the wind/wave misalignments effects of floating offshore wind turbines. Section ‘Methodology’ describes the applied methodology and presents the spar buoy wind turbine, the used numerical model and the selected environmental conditions. Results and the corresponding discussion are given in Section ‘Results and discussion’ for each load case corresponding to the codirectional and misaligned wind and wave loads. Results are presented and discussed in time and frequency domains. Finally, in Section ‘Conclusion’ some conclusions are drawn.


Author(s):  
Frank Lemmer ◽  
Kolja Müller ◽  
Wei Yu ◽  
David Schlipf ◽  
Po Wen Cheng

The dynamic response of floating offshore wind turbines is complex and requires numerous design iterations in order to converge at a cost-efficient hull shape with reduced responses to wind and waves. In this article, a framework is presented, which allows the optimization of design parameters with respect to user-defined criteria such as load reduction and material costs. The optimization uses a simplified nonlinear model of the floating wind turbine and a self-tuning model-based controller. The results are shown for a concrete three-column semi-submersible and a 10 MW wind turbine, for which a reduction of the fluctuating wind and wave loads is possible through the optimization. However, this happens at increased material costs for the platform due to voluminous heave plates or increased column spacing.


2021 ◽  
Author(s):  
Nikhar Abbas ◽  
Daniel Zalkind ◽  
Lucy Pao ◽  
Alan Wright

Abstract. This paper describes the development of a new reference controller framework for fixed and floating offshore wind turbines that greatly facilitates controller tuning and represents standard industry practices. The reference wind turbine controllers that are most commonly cited in the literature have been developed to work with specific reference wind turbines. Although these controllers have provided standard control functionalities, they are often not easy to modify for use on other turbines, so it has been challenging for researchers to run representative, fully dynamic simulations of other wind turbine designs. The Reference Open-Source Controller (ROSCO) has been developed to provide a modular reference wind turbine controller that represents industry standards and performs comparably to or better than existing reference controllers. The formulation of the ROSCO controller logic and tuning processes is presented in this paper. Control capabilities such as tip-speed ratio tracking generator torque control, minimum pitch saturation, wind speed estimation, and a smoothing algorithm at near-rated operation are included to provide a controller that is comparable to industry standards. A floating offshore wind turbine feedback module is also included to facilitate growing research in the floating offshore arena. All the standard controller implementations and control modules are automatically tuned such that a non-controls engineer or automated optimization routine can easily improve the controller performance. This article provides the framework and theoretical basis for the ROSCO controller modules and generic tuning processes. Simulations of the National Renewable Energy Laboratory (NREL) 5-MW reference wind turbine and International Energy Agency 15-MW reference turbine on the University of Maine semisubmersible platform are analyzed to demonstrate the controller's performance in both fixed and floating configurations, respectively. The simulation results demonstrate ROSCO's peak shaving routine to reduce maximum rotor thrusts by nearly 14 % compared to the NREL 5-MW reference wind turbine controller on the land-based turbine and to reduce maximum platform pitch angles by slightly more than 35 % when using the platform feedback routine instead of a more traditional low-bandwidth controller.


2019 ◽  
Vol 9 (6) ◽  
pp. 1244 ◽  
Author(s):  
Kasper Jessen ◽  
Kasper Laugesen ◽  
Signe M. Mortensen ◽  
Jesper K. Jensen ◽  
Mohsen N. Soltani

Floating offshore wind turbines are complex dynamical systems. The use of numerical models is an essential tool for the prediction of the fatigue life, ultimate loads and controller design. The simultaneous wind and wave loading on a non-stationary foundation with a flexible tower makes the development of numerical models difficult, the validation of these numerical models is a challenging task as the floating offshore wind turbine system is expensive and the testing of these may cause loss of the system. The validation of these numerical models is often made on scaled models of the floating offshore wind turbines, which are tested in scaled environmental conditions. In this study, an experimental validation of two numerical models for a floating offshore wind turbines will be conducted. The scaled model is a 1:35 Froude scaled 5 MW offshore wind turbine mounted on a tension-leg platform. The two numerical models are aero-hydro-servo-elastic models. The numerical models are a theoretical model developed in a MATLAB/Simulink environment by the authors, while the other model is developed in the turbine simulation tool FAST. A comparison between the numerical models and the experimental dynamics shows good agreement. Though some effects such as the periodic loading from rotor show a complexity, which is difficult to capture.


Author(s):  
F. Adam ◽  
T. Myland ◽  
F. Dahlhaus ◽  
J. Großmann

The paper will present the preliminary design of the so called GICON® - Tension Leg Platform (TLP) as an innovative foundation concept for floating offshore wind turbines. Preliminary results from model basin tests are also shared. This includes the currently ongoing research of comparing calculated and experimental data obtained through extensive wind and wave tank experiments with a scale model of an offshore wind turbine at the Maritime Research Institute Netherlands (MARIN) in June 2013. These tests have provided insights regarding the dynamic characteristics of the GICON®-TLP by analyzing the system’s response to different load cases. The experiments included wind and wave loads, which represent three different sea states, each with three different directions of inflow. The chosen load cases correspond to the proposed location in the German Baltic Sea where the full scale prototype will be erected.


Author(s):  
Haruki Yoshimoto ◽  
Ken Kamizawa

Abstract In recent years, the social demands for the introduction of renewable energy are increasing, demonstration projects of floating offshore wind turbine are being implemented and planned around the world. In Japan, a demonstration test named Fukushima FORWARD (Fukushima Floating Offshore Wind Farm Demonstration Project) has been conducted since 2011. Fukushima FORWARD is a project carried out by the Ministry of Economy, Trade and Industry, the world’s first floating offshore windfarm with a total capacity of 14 MW, including three floating offshore wind facilities and one floating offshore substation. In Fukushima FORWARD, Japan Marine United Corporation is in charge of floater part EPCI (Engineering, Procurement, Construction and Installation) of one floating offshore wind facility and one floating offshore substation. The floating offshore wind turbine (Ship Name: Fukushima Hamakaze) designed and built by Japan Marine United Corporation is equipped with a downwind 5 MW wind turbine. The floating structure adopts the advanced spar shape in order to reduce wave frequency motions and is moored by six spread catenary mooring lines. In the design of floating offshore wind turbines, it is important to estimate motions with high accuracy. Especially floating offshore wind turbine equipped with horizontal axis wind turbine requires heavy RNA (Rotor Nacelle Assembly) to be installed on the tower, and the floater motion greatly influences the design of the tower base. The tower base is required to have sufficient reliability because it directly leads to collapse of the wind turbine if it is damaged. On the other hand, the tower base is generally constructed with a cylinder made of extremely thick steel plate which is difficult to bend and weld, and if it has excessive safety factor the cost has increased greatly. Also, estimating the motion is the basis for estimating the load on the floating structure. In this paper, statistical analysis of long-term data measured by Fukushima FORWARD floating offshore wind turbine focusing on the motion and its features are introduced. In addition, we compare the motion obtained by potential theory and coupled analysis with actually measured motion using the measured wave and wind data and evaluate the validity of the analysis method.


Sign in / Sign up

Export Citation Format

Share Document