scholarly journals Influence of Pile Diameter and Aspect Ratio on the Lateral Response of Monopiles in Sand with Different Relative Densties

2021 ◽  
Vol 9 (6) ◽  
pp. 618
Author(s):  
Huan Wang ◽  
Lizhong Wang ◽  
Yi Hong ◽  
Amin Askarinejad ◽  
Ben He ◽  
...  

The large-diameter monopiles are the most preferred foundation used in offshore wind farms. However, the influence of pile diameter and aspect ratio on the lateral bearing behavior of monopiles in sand with different relative densities has not been systematically studied. This study presents a series of well-calibrated finite-element (FE) analyses using an advanced state dependent constitutive model. The FE model was first validated against the centrifuge tests on the large-diameter monopiles. Parametric studies were performed on rigid piles with different diameters (D = 4–10 m) and aspect ratios (L/D = 3–7.5) under a wide range of loading heights (e = 5–100 m) in sands with different relative densities (Dr = 40%, 65%, 80%). The API and PISA p-y models were systematically compared and evaluated against the FE simulation results. The numerical results revealed a rigid rotation failure mechanism of the rigid pile, which is independent of pile diameter and aspect ratio. The computed soil pressure coefficient (K = p/Dσ′v) of different diameter piles at same rotation is a function of z/L (z is depth) rather than z/D. The force–moment diagrams at different deflections were quantified in sands of different relative density. Based on the observed pile–soil interaction mechanism, a simple design model was proposed to calculate the combined capacity of rigid piles.

Géotechnique ◽  
2021 ◽  
pp. 1-39
Author(s):  
Huan Wang ◽  
M. Fraser Bransby ◽  
Barry M. Lehane ◽  
Lizhong Wang ◽  
Yi Hong

This paper presents a numerical investigation of the monotonic lateral response of large diameter monopiles in drained sand with configurations typical of those employed to support offshore wind turbines. Results from new centrifuge tests using instrumented monopiles in uniform dry sand deposits are first presented and used to illustrate the suitability of an advanced hypoplastic constitutive model to represent the sand in finite element analyses of the experiments. These analyses are then extended to examine the influence of pile diameter and loading eccentricity on the lateral response of rigid monopiles. The results show no dependency of suitably normalized lateral load transfer curves on the pile diameter and loading eccentricity. It is also shown that, in a given uniform sand, the profile with depth of net soil pressure at ultimate lateral capacity is independent of the pile diameter because of the insensitivity of the depth to the rotation centre for a rigid pile. A normalization method is subsequently proposed which unifies the load-deflection responses of different diameter rigid piles at a given load eccentricity.


Author(s):  
Madhuri Murali ◽  
Francisco Grajales ◽  
Ryan D. Beemer ◽  
Giovanna Biscontin ◽  
Charles Aubeny

Offshore wind power has gained momentum as a means to diversify the world’s energy infrastructure; however, little is still known of the global stiffness behavior of the large diameter low aspect ratio monopiles which have become the foundation of choice for offshore wind towers. Traditionally, offshore foundations have been associated with gravity structures for the oil and gas industry, which in general need to resist large vertical loads with limited lateral and moment loading. However, wind towers are purposely designed to be subjected to large lateral and moment loads from the wind and waves in order to maximize power generation. Geotechnical centrifuge tests were conducted and numerical models are being developed to examine the behavior of low aspect ratio piles in clayey soils. Monopiles with aspect ratio of two are being tested in the the 150g-ton centrifuge at Rensselaer Polytechnic Institute. Initial results include momenttheta and force-displacement for various loading conditions. Numerical studies consist of finite element (FE) simulations in order to predict capacities and permanent deformations. The comparisons are to be performed in terms of the total resistance that is exerted by the soil on the caisson. FE studies allow to model capacity for different displacement fields and also to compute interactions between different loading modes. This paper outlines our progress to date including both numerical and experimental results.


2014 ◽  
Vol 51 (9) ◽  
pp. 966-974 ◽  
Author(s):  
Rasmus Tofte Klinkvort ◽  
Ole Hededal

Currently monopiles are the most common foundation solution for offshore wind turbines. The design of monopiles relies on empirical data from tests performed on long, slender, small-diameter piles loaded predominantly in shear. In contrast, a monopile is a large-diameter, relatively short pile on which load is applied with a large eccentricity. With centrifuge tests as the basis, this paper investigates the behaviour of a rigid pile loaded with a high eccentricity. A test series was carried out to simulate idealized monotonic load cases for monopiles supporting an offshore wind turbine. Centrifuge tests were performed on model monopiles subjected to stress distributions equal to prototype monopiles with pile diameters ranging from 1–5 m and eccentricities ranging from 8.25–17.75 pile diameters. It was possible to identify a unified response of all of these tests by using dimensional analysis and Rankine’s passive earth pressure coefficient as a normalization parameter. The normalized ultimate soil resistance was unaffected by acceleration level and load eccentricity, indicating that the failure mechanism was the same for all tests. Based on the centrifuge tests, a reformulation of soil–pile interaction curves is presented. The normalized initial stiffness of the soil–pile resistance curves was seen to increase linearly with depth in the centrifuge tests. The reformulation differs from current guidelines in terms of the shape of the interaction curve and magnitude of ultimate resistance.


Aerospace ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 80
Author(s):  
Dmitry V. Vedernikov ◽  
Alexander N. Shanygin ◽  
Yury S. Mirgorodsky ◽  
Mikhail D. Levchenkov

This publication presents the results of complex parametrical strength investigations of typical wings for regional aircrafts obtained by means of the new version of the four-level algorithm (FLA) with the modified module responsible for the analysis of aerodynamic loading. This version of FLA, as well as a base one, is focused on significant decreasing time and labor input of a complex strength analysis of airframes by using simultaneously different principles of decomposition. The base version includes four-level decomposition of airframe and decomposition of strength tasks. The new one realizes additional decomposition of alternative variants of load cases during the process of determination of critical load cases. Such an algorithm is very suitable for strength analysis and designing airframes of regional aircrafts having a wide range of aerodynamic concepts. Results of validation of the new version of FLA for a high-aspect-ratio wing obtained in this work confirmed high performance of the algorithm in decreasing time and labor input of strength analysis of airframes at the preliminary stages of designing. During parametrical design investigation, some interesting results for strut-braced wings having high aspect ratios were obtained.


2020 ◽  
Vol 20 (10) ◽  
pp. 2042016
Author(s):  
A. Abdullahi ◽  
Y. Wang ◽  
S. Bhattacharya

Offshore wind turbines (OWTs) have emerged as a reliable source of renewable energy, witnessing massive deployment across the world. While there is a wide range of support foundations for these structures, the monopile and jacket are most utilized so far; their deployment is largely informed by water depths and turbine ratings. However, the recommended water depth ranges are often violated, leading to cross-deployment of the two foundation types. This study first investigates the dynamic implication of this practice to incorporate the findings into future analysis and design of these structures. Detailed finite element (FE) models of Monopile and Jacket supported OWTs are developed in the commercial software, ANSYS. Nonlinear soil springs are used to simulate the soil-structure interactions (SSI) and the group effects of the jacket piles are considered by using the relevant modification factors. Modal analyzes of the fixed and flexible-base cases are carried out, and natural frequencies are chosen as the comparison parameters throughout the study. Second, this study constructs a few-parameters SSI model for the two FE models developed above, which aims to use fewer variables in the FE model updating process without compromising its simulation quality. Maximum lateral soil resistance and soil depths are related using polynomial equations, this replaces the standard nonlinear soil spring model. The numerical results show that for the same turbine rating and total height, jacket supported OWTs generally have higher first-order natural frequencies than the monopile supported OWTs, while the reverse is true for the second-order vibration modes, for both fixed and flexible foundations. This contributes to future design considerations of OWTs. On the other hand, with only two parameters, the proposed SSI model has achieved the same accuracy as that using the standard model with seven parameters. It has the potential to become a new SSI model, especially for the identification of soil properties through the model updating process.


2011 ◽  
Vol 133 (12) ◽  
Author(s):  
Cong Qi ◽  
Yurong He ◽  
Yanwei Hu ◽  
Juancheng Yang ◽  
Fengchen Li ◽  
...  

In this work, the natural convection heat transfer of Cu-gallium nanofluid in a differentially heated enclosure is investigated. A single-phase model is employed with constant or temperature-dependent properties of the fluid. The results are shown over a wide range of Grashof numbers, volume fractions of nanoparticles, and aspect ratios. The Nusselt number is demonstrated to be sensitive to the aspect ratio. It is found that the Nusselt number is more sensitive to thermal conductivity than viscosity at a low velocity (especially for a low aspect ratio and a low Grashof number), however, it is more sensitive to the viscosity than the thermal conductivity at a high velocity (high aspect ratio and high Grashof number). In addition, the evolution of velocity vectors, isotherms, and Nusselt number for a small aspect ratio is investigated.


1992 ◽  
Vol 114 (4) ◽  
pp. 593-600 ◽  
Author(s):  
Yukimaru Shimizu ◽  
Yoshiki Futaki ◽  
C. Samuel Martin

This paper describes the relationship between hydraulic losses and secondary flow within sinuous conduits with complicated bends. It has been found that the nature of secondary flow present in the bends is quite sensitive to the geometric configuration of the bend and the actual aspect ratio of the conduit section. Indeed, many different secondary flow patterns have been found to exist as the bend geometry is altered. A wide range of experiments has been conducted for various aspect ratios of a rectangular conduit with different curvatures.


2020 ◽  
Vol 5 (4) ◽  
pp. 1521-1535
Author(s):  
Gianluca Zorzi ◽  
Amol Mankar ◽  
Joey Velarde ◽  
John D. Sørensen ◽  
Patrick Arnold ◽  
...  

Abstract. The design of foundations for offshore wind turbines (OWTs) requires the assessment of long-term performance of the soil–structure interaction (SSI), which is subjected to many cyclic loadings. In terms of serviceability limit state (SLS), it has to be ensured that the load on the foundation does not exceed the operational tolerance prescribed by the wind turbine manufacturer throughout its lifetime. This work aims at developing a probabilistic approach along with a reliability framework with emphasis on verifying the SLS criterion in terms of maximum allowable rotation during an extreme cyclic loading event. This reliability framework allows the quantification of uncertainties in soil properties and the constitutive soil model for cyclic loadings and extreme environmental conditions and verifies that the foundation design meets a specific target reliability level. A 3D finite-element (FE) model is used to predict the long-term response of the SSI, accounting for the accumulation of permanent cyclic strain experienced by the soil. The proposed framework was employed for the design of a large-diameter monopile supporting a 10 MW offshore wind turbine.


Author(s):  
Massimo Masi ◽  
Andrea Lazzaretto

Abstract The authors previously suggested a simple method to design forward-swept axial-flow rotors with blades having low hub-to-tip and high aspect ratios. This design method was demonstrated experimentally to increase the aeraulic performance of a small tube-axial fan having unswept blades and 0.4 hub-to-tip ratio, while maintaining the efficiency in the entire operation range. However, the method has not yet been assessed by experimental tests of lower hub-to-tip ratio designs where the strong three-dimensionality of the actual blade passage flow could compromise its validity. This assessment is the object of the present paper, which is aimed at examining the practical effectiveness of the forward-swept blade design method for low hub-to-tip ratio tube-axial fans. To this end, past results of the authors’ work are supported here by the design of a new 315mm forward-swept industrial fan derived from the 0.28 hub-to-tip ratio design presented in Part I of this paper. The ISO-5801 aerodynamic performance tests at blade Reynolds number of approximately 60,000 show that the method permits the design of forward-swept industrial fans capable of pressure coefficients in excess of 0.02 at aeraulic efficiency well above 60%, in a wide range of flow rate coefficients and blade positioning angles. Moreover, the method allows obtaining a pressure coefficient equal to 0.021 at 70% maximum efficiency, with an improvement of both the stall margin and stable operation pressure curve of the unswept design, if applied in combination with the complete fan design method presented in Part I of this paper.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kamran Kardel ◽  
Ali Khoshkhoo ◽  
Andres L. Carrano

Purpose The purpose of this paper is to investigate the effects of layer thickness, aspect ratio, part thickness and build orientation on distortion to have a better understanding of its behavior in material jetting technology. Design/methodology/approach Specimens with two layer thicknesses (14 and 28 µm) were printed in two aspect ratios (2:1) and (10:1), four thickness values (1, 2, 3 and 4 mm) and three build orientations (45d, XY and YX) and scanned with a wide-area 3D surface scanner to quantify distortion. The material used to build the test specimens was a commercially available resin, VeroWhitePlus RGD835. Findings The results of this study showed that all printed specimens by material jetting 3D printers had some level of distortion. The 1-mm thickness specimens, for both layer thicknesses of 14 µm and 28 µm, showed a wide range of anomalies including reverse coil set (RCS), reverse cross bow (RCB), cross bow (CB), wavy edge (WE) and some moderate twisting (T). Similar occurrences were observed for the 2-mm thickness specimens as there were RCS, WE, RCB and T anomalies that show the difference between the thinner specimens (1- and 2-mm) with the thicker ones (3- and 4-mm). In both 3- and 4-mm thickness specimens, there was more consistency in terms of distortion with mainly RCS and RCB anomalies. In total, six different types of flatness anomalies were found to occur with the following incidences: reverse coil set (91 specimens, 63.19%), reverse cross bow (50 specimens, 34.72%), wavy edge (23 specimens, 15.97%), twist (19 specimens, 12.50%), coil set (11 specimens, 7.64%) and cross bow (7 specimens, 4.86%). Originality/value This study expands the research on how the preprocess parameters such as layer thickness and build orientation and the geometrical parameters such as part thickness and aspect ratio cause dimensional distortion. Distortion is a pervasive consequence of the curing process in photopolymerization and explores one of the most common defects that come across in polymeric-based additive manufacturing. In addition to the characterization of the type and magnitude of distortion, the contributions of this work also include establishing the foundation for design guidelines aiming at minimizing distortion in material jetting.


Sign in / Sign up

Export Citation Format

Share Document