scholarly journals Time and Frequency Domain Dynamic Analysis of Offshore Mooring

2021 ◽  
Vol 9 (7) ◽  
pp. 781
Author(s):  
Shi He ◽  
Aijun Wang

The numerical procedures for dynamic analysis of mooring lines in the time domain and frequency domain were developed in this work. The lumped mass method was used to model the mooring lines. In the time domain dynamic analysis, the modified Euler method was used to solve the motion equation of mooring lines. The dynamic analyses of mooring lines under horizontal, vertical, and combined harmonic excitations were carried out. The cases of single-component and multicomponent mooring lines under these excitations were studied, respectively. The case considering the seabed contact was also included. The program was validated by comparing with the results from commercial software, Orcaflex. For the frequency domain dynamic analysis, an improved frame invariant stochastic linearization method was applied to the nonlinear hydrodynamic drag term. The cases of single-component and multicomponent mooring lines were studied. The comparison of results shows that frequency domain results agree well with nonlinear time domain results.

Author(s):  
Ying Min Low ◽  
Robin S. Langley

This paper outlines the dynamic analysis of flexible risers in the time and frequency domain using lumped mass discretization, where tension and bending are modeled with extensional and rotational springs respectively. For the time domain analysis, integration is carried out using the Wilson-theta implicit scheme, which allows the use of relatively large time steps without compromising stability. This increases computational efficiency and automatically filters the high frequency axial responses. The time domain code is validated with the commercial software Orcaflex, which employs an explicit scheme, and results are found to match for the same number of elements. The relative merits of implicit and explicit integration schemes are discussed. For the frequency domain analysis, the added mass, damping, axial/bending stiffness matrices are formulated in global coordinates. The nonlinear drag force is linearized iteratively for both regular and random waves. The range of accuracy for the linearized frequency domain simulations is assessed by methodical comparisons with the nonlinear time domain results for varying loading amplitudes. One problem encountered during the early development of an analytical tool is the lack of published results for validation, especially where access to commercial packages and test facilities is unavailable or limited. Hence, the simulation results presented herein are for a flexible hanging riser with simple boundary conditions and load cases to facilitate benchmarking.


Author(s):  
Ying Min Low ◽  
Robin S. Langley

The recognition of the need for a fully coupled analysis of deepwater floating production systems has led to the research and development of several coupled analysis tools in recent years. Barring a handful of exceptions, these tools and available commercial packages are invariably in the time domain. This has resulted in a much better understanding and confidence in time domain coupled analysis, but less so for the frequency domain approach. In this paper, the viability of frequency domain coupled analysis is explored by performing a systematic comparison of time and frequency domain methods using computer programs developed in-house. In both methods, a global coordinate system is employed where the vessel is modeled with six degrees-of-freedom, while the mooring lines and risers are discretized as lumped masses connected by extensional and rotational springs. Coupling between the vessel and the mooring lines is achieved by stiff springs, and the influence of inertia and damping from the lines are directly accounted for without the need for prior assumptions. First and second order wave forces generated from a random environment are applied on the vessel, as well as drag and inertia loading on the lines. For the time domain simulation, the Wilson-theta implicit integration scheme is employed to permit the use of relatively large time steps. The frequency domain analysis is highly efficient despite being formulated in global coordinates, owing to the banded characteristics of the mass, damping and stiffness matrices. The nonlinear drag forces are stochastically linearized iteratively. As both the time and frequency domain models of the coupled system are identical, a consistent assessment of the error induced by stochastic linearization can be made.


1999 ◽  
Vol 121 (3) ◽  
pp. 194-200 ◽  
Author(s):  
Z. Ran ◽  
M. H. Kim ◽  
W. Zheng

Nonlinear coupled responses of a moored spar in random waves with and without colinear currents are investigated in both time and frequency domains. The first and second-order wave forces, added mass and radiation damping, and wave drift damping are calculated from a hydrodynamics software package called WINTCOL. The total wave force time series (or spectra) are then generated in the time (or frequency) domain based on a two-term Volterra series model. The mooring dynamics are solved using the software package WINPOST, which is based on a generalized-coordinate-based finite element method. The mooring lines are attached to the platform through linear and rotational springs and dampers so that various boundary conditions can be modeled using proper spring and damping values. In the time-domain analysis, the nonlinear drag forces on the hull and mooring lines are applied at the instantaneous position. In the frequency-domain analysis, nonlinear drag forces are stochastically linearized, and solutions are obtained by an iterative procedure. The time-domain results are systematically compared with the frequency-domain results.


2021 ◽  
Author(s):  
Songmao Pu ◽  
Peiwei Sun ◽  
Xinyu Wei

Abstract The heat pipe cooled reactor adopts the solid-state reactor design concept and the heat is passively transferred out of the core through heat pipes. It is characterized by high inherent safety and simple operation and has broad application prospects in deep space exploration and propulsion, sea submarine navigation and exploration. The design of heat pipe cooled reactor is unique, and its dynamics are different from traditional water-cooled reactors. Therefore, it is necessary to develop its dynamic model and perform dynamic analysis, and in this paper, the study object of the heat pipe cooled reactor is the 100kW nuclear silent thermoelectric reactor (NUSTER-100). A nonlinear dynamic model is derived from the conservation equations of mass, energy and momentum. Point reactor kinetics equations are adopted. The linear dynamic model is constructed by linearization of the nonlinear model based on the disturbance theory and the transfer function is further derived applying Laplace transform. Both models including the nonlinear model and transfer function model are established on the MATLAB & Simulink simulation platform. Dynamic characteristic analysis contains time domain analysis and frequency domain analysis. For the time domain analysis, by introducing a variety of boundary condition disturbances, the results were compared with those from transfer function. The results are consistent and can correctly reflect the dynamic characteristics of the heat pipe cooled reactor. Therefore, the transfer function model can be applied to the subsequent design of the heat pipe cooled reactor power control system. For the dynamic analysis, it is divided into time domain and frequency domain. The time domain is to observe the change of core power and sodium temperature by introducing reactivity disturbance. For the frequency domain, after drawing the Bode plot of the transfer function, the system’s characteristics at different frequencies are analyzed. In addition, it can provide a theoretical basis for the design of the heat pipe cooled reactor power control system.


2018 ◽  
Vol 12 (7-8) ◽  
pp. 76-83
Author(s):  
E. V. KARSHAKOV ◽  
J. MOILANEN

Тhe advantage of combine processing of frequency domain and time domain data provided by the EQUATOR system is discussed. The heliborne complex has a towed transmitter, and, raised above it on the same cable a towed receiver. The excitation signal contains both pulsed and harmonic components. In fact, there are two independent transmitters operate in the system: one of them is a normal pulsed domain transmitter, with a half-sinusoidal pulse and a small "cut" on the falling edge, and the other one is a classical frequency domain transmitter at several specially selected frequencies. The received signal is first processed to a direct Fourier transform with high Q-factor detection at all significant frequencies. After that, in the spectral region, operations of converting the spectra of two sounding signals to a single spectrum of an ideal transmitter are performed. Than we do an inverse Fourier transform and return to the time domain. The detection of spectral components is done at a frequency band of several Hz, the receiver has the ability to perfectly suppress all sorts of extra-band noise. The detection bandwidth is several dozen times less the frequency interval between the harmonics, it turns out thatto achieve the same measurement quality of ground response without using out-of-band suppression you need several dozen times higher moment of airborne transmitting system. The data obtained from the model of a homogeneous half-space, a two-layered model, and a model of a horizontally layered medium is considered. A time-domain data makes it easier to detect a conductor in a relative insulator at greater depths. The data in the frequency domain gives more detailed information about subsurface. These conclusions are illustrated by the example of processing the survey data of the Republic of Rwanda in 2017. The simultaneous inversion of data in frequency domain and time domain can significantly improve the quality of interpretation.


2002 ◽  
Vol 124 (4) ◽  
pp. 827-834 ◽  
Author(s):  
D. O. Baun ◽  
E. H. Maslen ◽  
C. R. Knospe ◽  
R. D. Flack

Inherent in the construction of many experimental apparatus designed to measure the hydro/aerodynamic forces of rotating machinery are features that contribute undesirable parasitic forces to the measured or test forces. Typically, these parasitic forces are due to seals, drive couplings, and hydraulic and/or inertial unbalance. To obtain accurate and sensitive measurement of the hydro/aerodynamic forces in these situations, it is necessary to subtract the parasitic forces from the test forces. In general, both the test forces and the parasitic forces will be dependent on the system operating conditions including the specific motion of the rotor. Therefore, to properly remove the parasitic forces the vibration orbits and operating conditions must be the same in tests for determining the hydro/aerodynamic forces and tests for determining the parasitic forces. This, in turn, necessitates a means by which the test rotor’s motion can be accurately controlled to an arbitrarily defined trajectory. Here in, an interrupt-driven multiple harmonic open-loop controller was developed and implemented on a laboratory centrifugal pump rotor supported in magnetic bearings (active load cells) for this purpose. This allowed the simultaneous control of subharmonic, synchronous, and superharmonic rotor vibration frequencies with each frequency independently forced to some user defined orbital path. The open-loop controller was implemented on a standard PC using commercially available analog input and output cards. All analog input and output functions, transformation of the position signals from the time domain to the frequency domain, and transformation of the open-loop control signals from the frequency domain to the time domain were performed in an interrupt service routine. Rotor vibration was attenuated to the noise floor, vibration amplitude ≈0.2 μm, or forced to a user specified orbital trajectory. Between the whirl frequencies of 14 and 2 times running speed, the orbit semi-major and semi-minor axis magnitudes were controlled to within 0.5% of the requested axis magnitudes. The ellipse angles and amplitude phase angles of the imposed orbits were within 0.3 deg and 1.0 deg, respectively, of their requested counterparts.


Author(s):  
Niels Hørbye Christiansen ◽  
Per Erlend Torbergsen Voie ◽  
Jan Høgsberg ◽  
Nils Sødahl

Dynamic analyses of slender marine structures are computationally expensive. Recently it has been shown how a hybrid method which combines FEM models and artificial neural networks (ANN) can be used to reduce the computation time spend on the time domain simulations associated with fatigue analysis of mooring lines by two orders of magnitude. The present study shows how an ANN trained to perform nonlinear dynamic response simulation can be optimized using a method known as optimal brain damage (OBD) and thereby be used to rank the importance of all analysis input. Both the training and the optimization of the ANN are based on one short time domain simulation sequence generated by a FEM model of the structure. This means that it is possible to evaluate the importance of input parameters based on this single simulation only. The method is tested on a numerical model of mooring lines on a floating off-shore installation. It is shown that it is possible to estimate the cost of ignoring one or more input variables in an analysis.


Author(s):  
Mansour Tabatabaie ◽  
Thomas Ballard

Dynamic soil-structure interaction (SSI) analysis of nuclear power plants is often performed in frequency domain using programs such as SASSI [1]. This enables the analyst to properly a) address the effects of wave radiation in an unbounded soil media, b) incorporate strain-compatible soil shear modulus and damping properties and c) specify input motion in the free field using the de-convolution method and/or spatially variable ground motions. For structures that exhibit nonlinearities such as potential base sliding and/or uplift, the frequency-domain procedure is not applicable as it is limited to linear systems. For such problems, it is necessary to solve the problem in the time domain using the direct integration method in programs such as ADINA [2]. The authors recently introduced a sub-structuring technique called distributed parameter foundation impedance (DPFI) model that allows the structure to be partitioned from the total SSI system and analyzed in the time domain while the foundation soil is modeled using the frequency-domain procedure [3]. This procedure has been validated for linear systems. In this paper we have expanded the DPFI model to incorporate nonlinearities at the soil/structure interface by introducing nonlinear shear and normal springs arranged in series between the DPFI and structure model. This combination of the linear far-field impedance (DPFI) plus nonlinear near-field soil springs allows the foundation sliding and/or uplift behavior be analyzed in time domain while maintaining the frequency-dependent stiffness and radiation damping nature of the far-field foundation impedance. To check the accuracy of this procedure, a typical NPP foundation mat supported at the surface of a layered soil system and subjected to harmonic forced vibration was first analyzed in the frequency domain using SASSI to calculate the target linear response and derive a linear, far-field DPFI model. The target linear solution was then used to validate two linear time-domain ADINA models: Model 1 consisting of the mat foundation+DPFI derived from the linear SASSI model and Model 2 consisting of the total SSI system (mat foundation plus a soil block). After linear alignment, the nonlinear springs were added to both ADINA models and re-analyzed in time domain. Model 2 provided the target nonlinear solution while Model 1 provided the results using the DPFI+nonlinear springs. By increasing the amplitude of the vibration load, different levels of foundation sliding were simulated. Good agreement between the results of two models in terms of the displacement response of the mat and cyclic force-displacement behavior of the springs validates the accuracy of the procedure presented herein.


Author(s):  
K. Harold Yae ◽  
Su-Tai Chern ◽  
Howyoung Hwang

Abstract Using forward and inverse dynamic analysis, the dynamic simulation of a backhoe has been compared with experiments. In the experiment, recorded were the configuration and force histories; that is, velocity and position, and force output from the hydraulic cylinder-all were measured in the time domain. When the experimental force history is used as driving force in the simulation, forward dynamic analysis produces a corresponding motion history. And when the experimental motion history is used as if a prescribed trajectory, inverse dynamic analysis generates a corresponding force history. Therefore, these two sets of motion and force histories — one set from experiment, and the other from the simulation that is driven forward and backward with the experimental data — are compared in the time domain. The comparisons are discussed in regard to the effects of variations in initial conditions, friction, and viscous damping.


Sign in / Sign up

Export Citation Format

Share Document