scholarly journals Multiobjective Optimization of the Performance and Emissions of a Large Low-Speed Dual-Fuel Marine Engine Based on MNLR-MOPSO

2021 ◽  
Vol 9 (11) ◽  
pp. 1170
Author(s):  
Yujin Cong ◽  
Huibing Gan ◽  
Huaiyu Wang ◽  
Guotong Hu ◽  
Yi Liu

With increasingly strict emission regulations and growing environmental concerns, it is urgent to improve engine performance and reduce emissions. In this paper, multivariate nonlinear regression (MNLR) combined with multiobjective particle swarm optimization (MOPSO) was implemented to optimize the performance and emissions of a large low-speed two-stroke dual-fuel marine engine. First, a simulation model of a dual-fuel engine was established using AVL-BOOST software. Next, a single-factor scanning value method was applied to control a range of variables, including intake pressure, intake temperature, and natural gas mass fraction. Then, a nonlinear regression model was established using the statistical multivariate nonlinear regression equation. Finally, the multiobjective optimization algorithm implementing MOPSO was used to solve the trade-off between performance and emissions. It was found that when the intake pressure was 3.607 bar, the intake temperature was 297.15 K and the natural gas mass fraction was 0.962. The engine power increased by 0.34%, the brake specific fuel consumption (BSFC) reduced by 0.21%, and the NOx emissions reduced by 39.56%. The results show that the combination of multiple nonlinear regression and intelligent optimization algorithm is an effective method to optimize engine parameter settings.

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1342
Author(s):  
Van Chien Pham ◽  
Jae-Hyuk Choi ◽  
Beom-Seok Rho ◽  
Jun-Soo Kim ◽  
Kyunam Park ◽  
...  

This paper presents research on the combustion and emission characteristics of a four-stroke Natural gas–Diesel dual-fuel marine engine at full load. The AVL FIRE R2018a (AVL List GmbH, Graz, Austria) simulation software was used to conduct three-dimensional simulations of the combustion process and emission formations inside the engine cylinder in both diesel and dual-fuel mode to analyze the in-cylinder pressure, temperature, and emission characteristics. The simulation results were then compared and showed a good agreement with the measured values reported in the engine’s shop test technical data. The simulation results showed reductions in the in-cylinder pressure and temperature peaks by 1.7% and 6.75%, while NO, soot, CO, and CO2 emissions were reduced up to 96%, 96%, 86%, and 15.9%, respectively, in the dual-fuel mode in comparison with the diesel mode. The results also show better and more uniform combustion at the late stage of the combustions inside the cylinder when operating the engine in the dual-fuel mode. Analyzing the emission characteristics and the engine performance when the injection timing varies shows that, operating the engine in the dual-fuel mode with an injection timing of 12 crank angle degrees before the top dead center is the best solution to reduce emissions while keeping the optimal engine power.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
A. Gharehghani ◽  
S. M. Mirsalim ◽  
S. A. Jazayeri

Conventional compression ignition engines can easily be converted to a dual fuel mode of operation using natural gas as main fuel and diesel oil injection as pilot to initiate the combustion. At the same time, it is possible to increase the output power by increasing the diesel oil percentage. A detailed performance and combustion characteristic analysis of a heavy duty diesel engine has been studied in dual fuel mode of operation where natural gas is used as the main fuel and diesel oil as pilot. The influence of intake pressure and temperature on knock occurrence and the effects of initial swirl ratio on heat release rate, temperature-pressure and emission levels have been investigated in this study. It is shown that an increase in the initial swirl ratio lengthens the delay period for auto-ignition and extends the combustion period while it reduces NOx. There is an optimum value of the initial swirl ratio for a certain mixture intake temperature and pressure conditions that can achieve high thermal efficiency and low NOxemissions while decreases the tendency to knock. Simultaneous increase of intake pressure and initial swirl ratio could be the solution to power loss and knock in dual fuel engine.


Author(s):  
Liu Shenghua ◽  
Zhou Longbao ◽  
Wang Ziyan ◽  
Ren Jiang

The combustion characteristics of a turbocharged natural gas and diesel dual-fuelled compression ignition (CI) engine are investigated. With the measured cylinder pressures of the engine operated on pure diesel and dual fuel, the ignition delay, effects of pilot diesel and engine load on combustion characteristics are analysed. Emissions of HC, CO, NOx and smoke are measured and studied too. The results show that the quantity of pilot diesel has important effects on the performance and emissions of a dual-fuel engine at low-load operating conditions. Ignition delay varies with the concentration of natural gas. Smoke is much lower for the developed dual-fuel engine under all the operating conditions.


Author(s):  
N. T. Shoemaker ◽  
C. M. Gibson ◽  
A. C. Polk ◽  
S. R. Krishnan ◽  
K. K. Srinivasan

Different combustion strategies and fuel sources are needed to deal with increasing fuel efficiency demands and emission restrictions. One possible strategy is dual fueling using readily available resources. Propane and natural gas are readily available with the current infrastructure and biodiesel is growing in popularity as a renewable fuel. This paper presents experimental results from dual fuel combustion of methane (as a surrogate for natural gas) and propane as primary fuels with biodiesel pilots in a 1.9 liter, turbocharged, 4-cylinder compression ignition engine at 1800 rev/min. Experiments were performed with different percentage energy substitutions (PES) of propane and methane and at different brake mean effective pressures (BMEP/bmep). Brake thermal efficiency (BTE) and emissions (NOx, HC, CO, CO2, O2 and smoke) were also measured. Maximum PES levels for B100-methane dual fueling were limited to 70% at 2.5 bars bmep and 48% at 10 bars bmep, and corresponding values for B100-propane dual fueling were 64% and 43%, respectively. Maximum PES was limited by misfire at 2.5 bars bmep and the onset of engine knock at 10 bars bmep. Dual fuel BTEs approached straight B100 values at 10 bars bmep while they were significantly lower than B100 values at 2.5 bars bmep. In general, dual fueling was beneficial in reducing NOx and smoke emissions by 33% and 50%, respectively, from baseline B100 levels; however, both CO and THC emissions were significantly higher than baseline B100 levels at all PES and loads.


2015 ◽  
Vol 2015.90 (0) ◽  
pp. 287
Author(s):  
Yushi DAITO ◽  
Atsuki YOSHIOKA ◽  
Takuji ISHIYAMA ◽  
Takahiro SAKO ◽  
Hiroki TANAKA

Author(s):  
N. T. Shoemaker ◽  
C. M. Gibson ◽  
A. C. Polk ◽  
S. R. Krishnan ◽  
K. K. Srinivasan

Different combustion strategies and fuel sources are needed to deal with increasing fuel efficiency demands and emission restrictions. One possible strategy is dual fueling using readily available resources. Propane and natural gas are readily available with the current infrastructure and biodiesel is growing in popularity as a renewable fuel. This paper presents experimental results from dual fuel combustion of methane (as a surrogate for natural gas) and propane as primary fuels with biodiesel pilots in a 1.9 liter, turbocharged, 4 cylinder diesel engine at 1800 rev/min. Experiments were performed with different percentage energy substitutions (PES) of propane and methane and at different brake mean effective pressures (BMEP/bmep). Brake thermal efficiency (BTE) and emissions (NOx, HC, CO, CO2, O2 and smoke) were also measured. Maximum PES levels for B100-methane dual fuelling were limited to 70% at 2.5 bar bmep and 48% at 10 bar bmep, and corresponding values for B100-propane dual fuelling were 64% and 43%, respectively. Maximum PES was limited by misfire at 2.5 bar bmep and the onset of engine knock at 10 bar bmep. Dual fuel BTEs approached straight B100 values at 10 bar bmep while they were significantly lower than B100 values at 2.5 bar bmep. In general dual fuelling was beneficial in reducing NOx and smoke emissions by 33% and 50%, respectively from baseline B100 levels; however, both CO and THC emissions were significantly higher than baseline B100 levels at all PES and loads.


2018 ◽  
Vol 22 (5) ◽  
pp. 2013-2024 ◽  
Author(s):  
Mario Sremec ◽  
Mladen Bozic ◽  
Ante Vucetic ◽  
Darko Kozarac

Compressed natural gas is in automotive industry recognized as one of the ?cleanest? fossil fuels which can be used in internal combustion engines with a number of benefits. Since natural gas has much higher octane rating than gasoline it is expected that higher compression ratios can be used. The goal of the research is to determine the change of performance of spark ignited engine with the increase of compression ratio to values similar to compression ignited engine while keeping the exhaust emissions on the acceptable level and avoiding knock combustion. Measurements are performed at compression ratios 12, 16, and 18 at three different values of air excess ratio. Methane with known composition from a pressure cylinder is used instead of natural gas and the results are comprised of indicating results (in-cylinder and intake pressure in a crank angle space), emissions, temperatures, and mass-flows on various intake and exhaust positions. Analysis of results shows high influence of compression ratio and excess air ratio on combustion, performance, and exhaust gas emissions.


Sign in / Sign up

Export Citation Format

Share Document