scholarly journals Habitat Modelling on the Potential Impacts of Shipping Noise on Fin Whales (Balaenoptera physalus) in Offshore Irish Waters off the Porcupine Ridge

2021 ◽  
Vol 9 (11) ◽  
pp. 1207
Author(s):  
Kavya Ramesh ◽  
Simon Berrow ◽  
Rossa Meade ◽  
Joanne O’Brien

Little is known about the ecological importance of fin whales found year-round in southwestern offshore Irish waters. Understanding their ecology is important to reduce potential harm through any spatio-temporal overlap with commercial shipping and fishing activities. This study explored the potential environmental drivers and impacts of low-frequency shipping noise on fin whale calling at Porcupine Ridge using the presence/absence of call detections as a proxy for observed changes due to possible masking. Acoustic call data was collected at a low sampling rate (2 ksps) from the end of March 2016 to June 2016 (97 days) using a bottom-moored autonomous acoustic recorder with an omni-directional hydrophone. The high zero-inflated and binary nature of the data was addressed using generalised linear models. The results of our habitat modelling predicted call detections to increase significantly during night-time (p ≤ 0.01) with sea surface height and chlorophyll-a concentration (p ≤ 0.01), implying higher prey availability may occur on Porcupine Ridge. It also indicated a significant decrease in call detections with increasing shipping noise (p ≤ 0.01). Unfortunately, the model had a type II error. To provide robust results, a longer study not limited by data on the prey, and oceanographic drivers including spatial and temporal parameters is required. This study provides the foundations on which further ecological data could be added to establish management and mitigation measures to minimize the effects of shipping noise on fin whales.

2009 ◽  
Vol 23 (4) ◽  
pp. 191-198 ◽  
Author(s):  
Suzannah K. Helps ◽  
Samantha J. Broyd ◽  
Christopher J. James ◽  
Anke Karl ◽  
Edmund J. S. Sonuga-Barke

Background: The default mode interference hypothesis ( Sonuga-Barke & Castellanos, 2007 ) predicts (1) the attenuation of very low frequency oscillations (VLFO; e.g., .05 Hz) in brain activity within the default mode network during the transition from rest to task, and (2) that failures to attenuate in this way will lead to an increased likelihood of periodic attention lapses that are synchronized to the VLFO pattern. Here, we tested these predictions using DC-EEG recordings within and outside of a previously identified network of electrode locations hypothesized to reflect DMN activity (i.e., S3 network; Helps et al., 2008 ). Method: 24 young adults (mean age 22.3 years; 8 male), sampled to include a wide range of ADHD symptoms, took part in a study of rest to task transitions. Two conditions were compared: 5 min of rest (eyes open) and a 10-min simple 2-choice RT task with a relatively high sampling rate (ISI 1 s). DC-EEG was recorded during both conditions, and the low-frequency spectrum was decomposed and measures of the power within specific bands extracted. Results: Shift from rest to task led to an attenuation of VLFO activity within the S3 network which was inversely associated with ADHD symptoms. RT during task also showed a VLFO signature. During task there was a small but significant degree of synchronization between EEG and RT in the VLFO band. Attenuators showed a lower degree of synchrony than nonattenuators. Discussion: The results provide some initial EEG-based support for the default mode interference hypothesis and suggest that failure to attenuate VLFO in the S3 network is associated with higher synchrony between low-frequency brain activity and RT fluctuations during a simple RT task. Although significant, the effects were small and future research should employ tasks with a higher sampling rate to increase the possibility of extracting robust and stable signals.


Batteries ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 36
Author(s):  
Erik Goldammer ◽  
Julia Kowal

The distribution of relaxation times (DRT) analysis of impedance spectra is a proven method to determine the number of occurring polarization processes in lithium-ion batteries (LIBs), their polarization contributions and characteristic time constants. Direct measurement of a spectrum by means of electrochemical impedance spectroscopy (EIS), however, suffers from a high expenditure of time for low-frequency impedances and a lack of general availability in most online applications. In this study, a method is presented to derive the DRT by evaluating the relaxation voltage after a current pulse. The method was experimentally validated using both EIS and the proposed pulse evaluation to determine the DRT of automotive pouch-cells and an aging study was carried out. The DRT derived from time domain data provided improved resolution of processes with large time constants and therefore enabled changes in low-frequency impedance and the correlated degradation mechanisms to be identified. One of the polarization contributions identified could be determined as an indicator for the potential risk of plating. The novel, general approach for batteries was tested with a sampling rate of 10 Hz and only requires relaxation periods. Therefore, the method is applicable in battery management systems and contributes to improving the reliability and safety of LIBs.


2012 ◽  
Vol 140 (8) ◽  
pp. 2628-2646 ◽  
Author(s):  
Shu-Chih Yang ◽  
Eugenia Kalnay ◽  
Brian Hunt

Abstract An ensemble Kalman filter (EnKF) is optimal only for linear models because it assumes Gaussian distributions. A new type of outer loop, different from the one used in 3D and 4D variational data assimilation (Var), is proposed for EnKF to improve its ability to handle nonlinear dynamics, especially for long assimilation windows. The idea of the “running in place” (RIP) algorithm is to increase the observation influence by reusing observations when there is strong nonlinear error growth, and thus improve the ensemble mean and perturbations within the local ensemble transform Kalman filter (LETKF) framework. The “quasi-outer-loop” (QOL) algorithm, proposed here as a simplified version of RIP, aims to improve the ensemble mean so that ensemble perturbations are centered at a more accurate state. The performances of LETKF–RIP and LETKF–QOL in the presence of nonlinearities are tested with the three-variable Lorenz model. Results show that RIP and QOL allow LETKF to use longer assimilation windows with significant improvement of the analysis accuracy during periods of high nonlinear growth. For low-frequency observations (every 25 time steps, leading to long assimilation windows), and using the optimal inflation, the standard LETKF RMS error is 0.68, whereas for QOL and RIP the RMS errors are 0.47 and 0.35, respectively. This can be compared to the best 4D-Var analysis error of 0.53, obtained by using both the optimal long assimilation windows (75 time steps) and quasi-static variational analysis.


Polar Biology ◽  
2021 ◽  
Vol 44 (2) ◽  
pp. 237-257
Author(s):  
Rebecca Shaftel ◽  
Daniel J. Rinella ◽  
Eunbi Kwon ◽  
Stephen C. Brown ◽  
H. River Gates ◽  
...  

AbstractAverage annual temperatures in the Arctic increased by 2–3 °C during the second half of the twentieth century. Because shorebirds initiate northward migration to Arctic nesting sites based on cues at distant wintering grounds, climate-driven changes in the phenology of Arctic invertebrates may lead to a mismatch between the nutritional demands of shorebirds and the invertebrate prey essential for egg formation and subsequent chick survival. To explore the environmental drivers affecting invertebrate availability, we modeled the biomass of invertebrates captured in modified Malaise-pitfall traps over three summers at eight Arctic Shorebird Demographics Network sites as a function of accumulated degree-days and other weather variables. To assess climate-driven changes in invertebrate phenology, we used data from the nearest long-term weather stations to hindcast invertebrate availability over 63 summers, 1950–2012. Our results confirmed the importance of both accumulated and daily temperatures as predictors of invertebrate availability while also showing that wind speed negatively affected invertebrate availability at the majority of sites. Additionally, our results suggest that seasonal prey availability for Arctic shorebirds is occurring earlier and that the potential for trophic mismatch is greatest at the northernmost sites, where hindcast invertebrate phenology advanced by approximately 1–2.5 days per decade. Phenological mismatch could have long-term population-level effects on shorebird species that are unable to adjust their breeding schedules to the increasingly earlier invertebrate phenologies.


2016 ◽  
Vol 48 (1) ◽  
pp. 9 ◽  
Author(s):  
Stefano Mammola ◽  
Riccardo Cavalcante ◽  
Marco Isaia

The diving bell spider <em>Argyroneta aquatica</em> is the only known spider to conduct a wholly aquatic life. For this reason, it has been the object of an array of studies concerning different aspects of its peculiar biology such as reproductive behavior and sexual dimorphism, physiology, genetic and silk. On the other hand, besides some empirical observations, the autoecology of this spider is widely understudied. We conducted an ecological study in a resurgence located in the Po Plain (Northern Italy, Province of Vercelli) hosting a relatively rich population of <em>Argyroneta</em> <em>aquatica</em>, aiming at identifying the ecological factors driving its presence at the micro-habitat level. By means of a specific sampling methodology, we acquired distributional data of the spiders in the study area and monitored physical-chemical and habitat structure parameters at each plot. We analyzed the data through Bernoulli Generalized Linear Models (GLM). Results pointed out a significant positive effect of the presence of aquatic vegetation in the plot. In addition, the presence of <em>A. aquatica</em> was significantly associated with areas of the resurgence characterized at the same time by high prey availability and low density of predators. Considering the ecological importance and rarity of this species, we update and revise the data on the distribution of <em>A. aquatica</em> in Italy.


Author(s):  
Vladimir Karpinsky ◽  
Vladimir Asming

The infrasound array VALS developed in Kola Branch GS RAS has been installed in June 2016 on the Valaam Island in addition to the continuously operating seismic station VALR. The array consists of 3 spaced low-frequency microphones. The data with a sampling rate of 100 Hz is stored continuously at the acquisition computer; the timing is carried out using GPS. In addition to the acquisition system, an infrasound signal detector is installed on the computer. It works in near real-time mode and enables us to find signals and compute their back azimuths. At the end of 2018, a new version of the detector was developed at the Kola Branch GS RAS. The detector began to work much faster, which enabled us to carry out data processing for 2.5 years in two frequency ranges in a short time. The main task of the array is acoustic monitoring, the detection of infrasound events, the determination of their parameters, and the selection of events of natural origin. The data are also used (in combination with the VALR seismic station data) to locate near seismic events, especially weak ones. The analysis of the obtained data revealed the prevailing directions to the signal sources. The change of directions to sources in time was investigated, seasonal features were revealed. Acoustic events were detected in the frequency bands 1–5 Hz and 10–20 Hz, and a significant difference was found in the azimuthal distribution of events for these ranges. A joint analysis of acoustic and seismic data showed that the part of events with both acoustic and seismic components is low – it is almost completely exhausted by career explosions. It was also noted that in addition to explosions in nearby quarries (Kuznechnoye, Pitkäranta) located at a distance of 50–60 km, according to acoustic data, events corresponding to explosions at quarries located at a distance of 100 km or more were repeatedly identified.


2018 ◽  
Vol 68 (2) ◽  
pp. 129-146 ◽  
Author(s):  
Giuliano Milana ◽  
Luca Luiselli ◽  
Giovanni Amori

AbstractThe diet of predators is influenced by local conditions (e.g., characteristics of habitat and microhabitat, seasonality, prey availability) and therefore tends to change across time. In this paper, the diet composition of the barn owl (Tyto alba) in Italy was studied using a meta-analysis of 47 articles (covering 212 independent sites, with multiple surveys for some sites, thus giving a total of 290 datasets) between 1972 and 2012. General Linear Models were used to assess the effects of year and study site on four distinct diversity indices (species richness, dominance, Shannon-Weaver diversity and equitability). The year of data collection was a factor used in all analyses. Year had a greater effect than study site on all diversity indices, but the effect was not significant for the evenness and the species richness. However, dietary dominance increased significantly over the years, the Shannon-Weaver index of diversity decreased significantly over time, and equitability also decreased significantly over time. The relative abundance of various species of rodents did not increase/decrease progressively over the years, although there were inter-annual fluctuations. On the other hand, the relative abundance of insectivores tended to decrease with time, and there was a significantly negative correlation between year and the frequency of consumption of Sorex spp. and a marginally significant negative correlation for Crocidura leucodon.


2002 ◽  
Vol 205 (16) ◽  
pp. 2525-2533 ◽  
Author(s):  
Stefan Schuster

SUMMARYGymnotiform weakly electric fish find their way in the dark using a continuously operating active sensory system. An electric organ generates a continuous train of discharges (electric organ discharges, EODs), and tuberous high-frequency electroreceptors monitor the pattern of transcutaneous current flow associated with each EOD. Here, I report that a prior interruption to the continuous train of EODs dramatically affects a response shown by many pulse-type gymnotids. In this so-called novelty response, fish normally raise their electrosensory sampling rate in response to novel sensory stimuli. The gymnotid Gymnotus carapo was induced to pause its EODs briefly, and the novelty response to sensory stimuli given post-pause was analyzed. Mechanosensory stimuli given as early as 20 EODs after a pause elicited clear novelty responses, but strong high-frequency electrical stimuli were ineffective at this time. Moreover, high-frequency electrical stimuli remained less efficient in eliciting normal-sized responses until approximately 2000 EODs, or 40s, after a pause. The post-pause inefficiency of high-frequency stimuli was not due to an inappropriate choice of intensity or their temporal patterning and did not result from the stimulation that caused the pausing. Low-frequency stimuli that also recruited ampullary electroreceptors were more efficient than high-frequency stimuli in eliciting post-pause responses. These findings show that continuous activity is required either to maintain sensitivity to high-frequency electrical stimuli or to ensure that such stimuli are able to modulate efficiently the pacemaker that sets the discharge frequency.


2019 ◽  
Vol 60 (79) ◽  
pp. 125-136 ◽  
Author(s):  
Tao Zhang ◽  
Yuqiao Chen ◽  
Min Ding ◽  
Zhongyan Shen ◽  
Yuande Yang ◽  
...  

ABSTRACTWe conducted a 9-d seismic experiment in October 2015 at Laohugou Glacier No. 12. We identified microseismic signals using the short-term/long-term average trigger algorithm at four stations and classified them as long and short-duration events based on waveform, frequency, duration and magnitude characteristics. Both categories show systematical diurnal trends. The long-duration events are low-frequency tremor-like events that mainly occurred during the daytime with only several events per day. These events lasted tens of seconds to tens of minutes and are likely related to resonance of daytime meltwater. The dominant short-duration events mostly occurred during the night time with a peak occurrence frequency of ~360 h−1. Their short-duration (&lt;0.2 s), high frequency (20–100 Hz) and dominance of Rayleigh waves are typical of events for near-surface crack opening. A strong negative correlation between the hourly event number and temperature change rate suggests that the occurrence of night-time events is controlled by the rate of night-time cooling. We estimated the near-surface tensile stress due to thermal contraction at night to be tens of kilopascals, which is enough to induce opening of surface cracks with pre-existing local stress concentrations, although we cannot exclude the effect of refreezing of meltwater produced during the day.


2007 ◽  
Vol 57 (1) ◽  
pp. 49-61 ◽  
Author(s):  
Juan Pleguezuelos ◽  
José Brito ◽  
Soumia Fahd ◽  
Xavier Santos ◽  
Gustavo Llorente ◽  
...  

AbstractSeveral life-history traits may increase vulnerability of species to extinction. Among snakes, ambush predation and dietary specialisation are factors that increase this vulnerability. European viper species, genus Vipera, display such traits and are categorised as endangered in several parts of its range. For their conservation management, a deeper knowledge of their ecology and habitat use is highly relevant. One of the species with less ecological data is the Lataste's viper Vipera latastei, a species which lives in the Iberian Peninsula and northwestern Africa. Here, we describe its diet based on the analysis of gut content of 435 museum specimens plus nine bibliographic data from the entire Iberian range. The species showed seasonal and ontogenetic shift in diet but no sexual variations. Feeding activity (percentage of vipers with prey) was low in accordance with its ambush predation tactics, being lower in spring than in summer and autumn. Prey spectrum included two main (reptiles and small mammals), and three sporadic, types of prey (arthropods, amphibians and birds). The consumption of reptiles and mammals was seasonal; the former decreased in occurrence from spring to autumn, whereas the latter showed an opposite pattern. There was an ontogenetic shift in the diet: juveniles fed mainly on reptiles and arthropods, whereas adult vipers progressively substitute this prey with insectivores, and the largest vipers primarily foraged on rodents and birds. Our results suggest that the seasonal variation in prey type was related to prey availability, whereas the ontogenetic shift was linked to gape limitation. The apparently wide prey spectrum of V. latastei must therefore be examined, taking into account that there are seasonal and ontogenetic dietary variations as well as geographic differences, the latter probably driven by climatic contrasts into the Iberian Peninsula. This new data of the endangered Iberian V. latastei can aid the effective conservation management of this species.


Sign in / Sign up

Export Citation Format

Share Document