scholarly journals The Effects of Major Mushroom Bioactive Compounds on Mechanisms That Control Blood Glucose Level

2021 ◽  
Vol 7 (1) ◽  
pp. 58
Author(s):  
Jelena Aramabašić Jovanović ◽  
Mirjana Mihailović ◽  
Aleksandra Uskoković ◽  
Nevena Grdović ◽  
Svetlana Dinić ◽  
...  

Diabetes mellitus is a life-threatening multifactorial metabolic disorder characterized by high level of glucose in the blood. Diabetes and its chronic complications have a significant impact on human life, health systems, and countries’ economies. Currently, there are many commercial hypoglycemic drugs that are effective in controlling hyperglycemia but with several serious side-effects and without a sufficient capacity to significantly alter the course of diabetic complications. Over many centuries mushrooms and their bioactive compounds have been used in the treatment of diabetes mellitus, especially polysaccharides and terpenoids derived from various mushroom species. This review summarizes the effects of these main mushroom secondary metabolites on diabetes and underlying molecular mechanisms responsible for lowering blood glucose. In vivo and in vitro data revealed that treatment with mushroom polysaccharides displayed an anti-hyperglycemic effect by inhibiting glucose absorption efficacy, enhancing pancreatic β-cell mass, and increasing insulin-signaling pathways. Mushroom terpenoids act as inhibitors of α-glucosidase and as insulin sensitizers through activation of PPARγ in order to reduce hyperglycemia in animal models of diabetes. In conclusion, mushroom polysaccharides and terpenoids can effectively ameliorate hyperglycemia by various mechanisms and can be used as supportive candidates for prevention and control of diabetes in the future.

Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2556 ◽  
Author(s):  
Ganesan ◽  
Xu

Diabetes mellitus is a multifactorial, heterogeneous metabolic disorder, causing various health complications and economic issues, which apparently impacts the human’s life. Currently, commercial diabetic drugs are clinically managed for diabetic treatment that has definite side effects. Dietary polysaccharides mainly derive from natural sources, including medicinal plants, grains, fruits, vegetables, edible mushroom, and medicinal foods, and possess anti-diabetic potential. Hence, this review summarizes the effects of dietary polysaccharides on diabetes and underlying molecular mechanisms related to inflammatory factors, oxidative stress, and diabetes in various animal models. The analysis of literature and appropriate data on anti-diabetic polysaccharide from electronic databases was conducted. In vivo and in vitro trials have revealed that treatment of these polysaccharides has hypoglycemic, hypolipidemic, antioxidant, and anti-inflammatory effects, which enhance pancreatic β-cell mass and alleviates β-cell dysfunction. It enhances insulin signaling pathways through insulin receptors and activates the PI3K/Akt pathway, and eventually modulates ERK/JNK/MAPK pathway. In conclusion, dietary polysaccharides can effectively ameliorate hyperglycemia, hyperlipidemia, low-grade inflammation, and oxidative stress in type 2 diabetes mellitus (T2DM), and, thus, consumption of polysaccharides can be a valuable choice for diabetic control.


Author(s):  
Marco Raffaele ◽  
Khaled Greish ◽  
Luca Vanella ◽  
Giuseppe Carota ◽  
Fatemah Bahman ◽  
...  

Background: Pomegranate is a fruit rich in bioactive compounds such as punicalagins, gallic acid, and ellagic acid derivatives. It has been widely used since ancient times in traditional medicine for a wide variety of diseases. It has been reported that bioactive compounds, such as polyphenols, are able to induce the expression of cytoprotective enzymes, including HO-1. The contribution of HO-1 activity to the prevention of intestinal inflammation has been shown in different models of Inflammatory bowel diseases (IBD). Objective: Aim of the present research was to investigate the molecular mechanisms involved in the beneficial effects of a pomegranate extract (PE), rich in bioactive compounds in intestinal inflammation. Methods: Caco-2 cells exposed to LPS and DSS induced colitis were chosen as convenient experimental models of intestinal inflammation. Results: Results obtained in our experimental conditions, showed that PE in vitro was able to induce HO-1 and to reduce cellular damage and oxidative stress through increase of GSH levels. Moreover, PE was able to decrease the pro-inflammatory marker IL-8 levels and to activate TIGAR pathway. The results obtained in vivo, in agreement with the data obtained in vitro, highlighted the ability of PE to reduce intestinal inflammation, preserve the colon length and histological features and reduce IL-6 levels compared to the DSS treated group. Conclusion: PE, rich in bioactive compounds, could contribute, as supportive therapy, to enhance the effects of the conventional therapeutic strategies to the management of IBD.


2019 ◽  
Vol 20 (6) ◽  
pp. 1517 ◽  
Author(s):  
Kai Wang ◽  
Yu Su ◽  
Yuting Liang ◽  
Yanhui Song ◽  
Liping Wang

Type 2 diabetes mellitus (T2DM) is associated with pancreatic β-cell dysfunction which can be induced by oxidative stress. Deuterohemin-βAla-His-Thr-Val-Glu-Lys (DhHP-6) is a microperoxidase mimetic that can scavenge reactive oxygen species (ROS) in vivo. In our previous studies, we demonstrated an increased stability of linear peptides upon their covalent attachment to porphyrins. In this study, we assessed the utility of DhHP-6 as an oral anti-diabetic drug in vitro and in vivo. DhHP-6 showed high resistance to proteolytic degradation in vitro and in vivo. The degraded DhHP-6 product in gastrointestinal (GI) fluid retained the enzymatic activity of DhHP-6, but displayed a higher permeability coefficient. DhHP-6 protected against the cell damage induced by H2O2 and promoted insulin secretion in INS-1 cells. In the T2DM model, DhHP-6 reduced blood glucose levels and facilitated the recovery of blood lipid disorders. DhHP-6 also mitigated both insulin resistance and glucose tolerance. Most importantly, DhHP-6 promoted the recovery of damaged pancreas islets. These findings suggest that DhHP-6 in physiological environments has high stability against enzymatic degradation and maintains enzymatic activity. As DhHP-6 lowered the fasting blood glucose levels of T2DM mice, it thus represents a promising candidate for oral administration and clinical therapy.


2020 ◽  
Vol 6 (4) ◽  
pp. 269
Author(s):  
Shuang Zhao ◽  
Qi Gao ◽  
Chengbo Rong ◽  
Shouxian Wang ◽  
Zhekun Zhao ◽  
...  

Mushrooms have been valued as food and health supplements by humans for centuries. They are rich in dietary fiber, essential amino acids, minerals, and many bioactive compounds, especially those related to human immune system functions. Mushrooms contain diverse immunoregulatory compounds such as terpenes and terpenoids, lectins, fungal immunomodulatory proteins (FIPs) and polysaccharides. The distributions of these compounds differ among mushroom species and their potent immune modulation activities vary depending on their core structures and fraction composition chemical modifications. Here we review the current status of clinical studies on immunomodulatory activities of mushrooms and mushroom products. The potential mechanisms for their activities both in vitro and in vivo were summarized. We describe the approaches that have been used in the development and application of bioactive compounds extracted from mushrooms. These developments have led to the commercialization of a large number of mushroom products. Finally, we discuss the problems in pharmacological applications of mushrooms and mushroom products and highlight a few areas that should be improved before immunomodulatory compounds from mushrooms can be widely used as therapeutic agents.


2020 ◽  
Vol 20 (1) ◽  
pp. 39-53 ◽  
Author(s):  
Tânia P. Almeida ◽  
Alice A. Ramos ◽  
Joana Ferreira ◽  
Amaya Azqueta ◽  
Eduardo Rocha

: Chronic Myeloid Leukemia (CML) represents 15-20% of all new cases of leukemia and is characterized by an uncontrolled proliferation of abnormal myeloid cells. Currently, the first-line of treatment involves Tyrosine Kinase Inhibitors (TKIs), which specifically inhibits the activity of the fusion protein BCR-ABL. However, resistance, mainly due to mutations, can occur. In the attempt to find more effective and less toxic therapies, several approaches are taken into consideration such as research of new anti-leukemic drugs and “combination chemotherapy” where different drugs that act by different mechanisms are used. Here, we reviewed the molecular mechanisms of CML, the main mechanisms of drug resistance and current strategies to enhance the therapeutic effect of TKIs in CML. Despite major advances in CML treatment, new, more potent anticancer drugs and with fewer side effects are needed. Marine organisms, and particularly seaweed, have a high diversity of bioactive compounds with some of them having anticancer activity in several in vitro and in vivo models. The state-of-art suggests that their use during cancer treatment may improve the outcome. We reviewed here the yet few data supporting anti-leukemic activity of some carotenoids and phlorotannins in some leukemia models. Also, strategies to overcome drug resistance are discussed, particularly the combination of conventional drugs with natural compounds.


2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
Ning Li ◽  
Ling Li ◽  
Haiming Wu ◽  
Heng Zhou

Geniposide, an iridoid glucoside, is a major component in the fruit of Gardenia jasminoides Ellis (Gardenia fruits). Geniposide has been experimentally proved to possess multiple pharmacological actions involving antioxidative stress, anti-inflammatory, antiapoptosis, antiangiogenesis, antiendoplasmic reticulum stress (ERS), etc. In vitro and in vivo studies have further identified the value of geniposide in a spectrum of preclinical models of diabetes mellitus (DM) and cardiovascular disorders. The antioxidative property of geniposide should be attributed to the result of either the inhibition of numerous pathological processes or the activation of various proteins associated with cell survival or a combination of both. In this review, we will summarize the available knowledge on the antioxidative property and protective effects of geniposide in DM and cardiovascular disease in the literature and discuss antioxidant mechanisms as well as its potential applications in clinic.


2020 ◽  
Vol 7 (2) ◽  
pp. 58-74
Author(s):  
Donny Risnanda Herdien ◽  
Cahaya Azzahra Rahmadhani ◽  
Septia Nurmala ◽  
Arry Yanuar

Terapi diabetes dengan obat anti diabetes (OAD) yang umum digunakan memiliki efek samping yang tidak diinginkan serta masih tingginya harga OAD menjadi permasalahan, sehingga perlu dicari atau dikembangkan alternatif OAD lain yang lebih aman, efektif, dan murah. Berdasarkan penelitian yang telah dilakukan secara in vitro dan in vivo, flavonoid memiliki khasiat dalam menurunkan kadar glukosa darah. Kulit buah jeruk mengandung banyak senyawa flavonoid. Namun pemanfaatannya belum maksimal walaupun jumlah produksi jeruk dunia sangat tinggi.  Penulisan review ini bertujuan untuk mengulas informasi terkini mengenai efek flavonoid pada kulit jeruk dalam manajemen diabetes serta mekanisme molekulernya. Sebuah tinjauan pustaka dilakukan menggunakan database elektronik Scopus, ScienceDirect, dan American Chemical Society mencakup literatur terbaru dengan tahun publikasi penelitian dari 2010 sampai sekarang. Beberapa kata kunci dikombinasikan untuk memastikan semua penelitian in vitro dan in vivo didapatkan. Kata kunci yang digunakan: “citrus peel”, “flavonoid”, “diabetes melitus”, “mechanism”, dan “blood glucose”.Berdasarkan hasil penelitian yang telah dilakukan peneliti sebelumnya didapatkan bahwa flavonoid kulit jeruk dapat memperbaiki metabolisme glukosa, aktivitas enzim hati, pensinyalan insulin dan regulasi lipogenesis, memperbaiki kerusakan pada sel islet pankreas dan stimulasi sekresi insulin, dan melindungi dari penyakit komplikasi diabetes. Secara keseluruhan, flavonoid kulit jeruk sebagai antidiabetes yang dapat mencegah peningkatan kadar gula darah dan menurunkan resistensi insulin. Flavonoid berperan dalam penghambatan enzim yang utamanya merupakan mekanisme utama obat-obatan dan juga penghambatan pada level ekspresi gen dan sifatnya sebagai antioksidan. Penelitian lebih lanjut mengenai keamanan dan efikasi flavonoid dibutuhkan untuk pengembangan flavonoid kulit buah jeruk sebagai terapi alternatif diabetes melitus.  


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Foo Sok Yen ◽  
Chan Shu Qin ◽  
Sharryl Tan Shi Xuan ◽  
Puah Jia Ying ◽  
Hong Yi Le ◽  
...  

Diabetes mellitus is a metabolic disorder with chronic high blood glucose levels, and it is associated with defects in insulin secretion, insulin resistance, or both. It is also a major public issue, affecting the world's population. This disease contributes to long-term health complications such as dysfunction and failure of multiple organs, including nerves, heart, blood vessels, kidneys, and eyes. Flavonoids are phenolic compounds found in nature and usually present as secondary metabolites in plants, vegetables, and fungi. Flavonoids possess many health benefits such as anti-inflammatory and antioxidant activities, and naturally occurring flavonoids contribute to antidiabetic effects.Many studies conducted in vivo and in vitro have proven the hypoglycemic effect of plant flavonoids. A large number of studies showed that flavonoids hold positive results in controlling the blood glucose level in streptozotocin (STZ)-induced diabetic rats and further prevent the complications of diabetes. The future development of flavonoid-based drugs is believed to provide significant effects on diabetes mellitus and diabetes complication diseases. This review aims at summarizing the various types of flavonoids that function as hyperglycemia regulators such as inhibitors of α-glucosidase and glucose cotransporters in the body. This review article discusses the hypoglycemic effects of selected plant flavonoids namely quercetin, kaempferol, rutin, naringenin, fisetin, and morin. Four search engines, PubMed, Google Scholar, Scopus, and SciFinder, are used to collect the data.


2020 ◽  
Vol 16 (2) ◽  
pp. 104-116
Author(s):  
Anshul Shakya ◽  
Sushil Kumar Chaudary ◽  
Debapriya Garabadu ◽  
Hans Raj Bhat ◽  
Bibhuti Bhusan Kakoti ◽  
...  

Background: Preclinical experimental models historically play a critical role in the exploration and characterization of disease pathophysiology. Further, these in-vivo and in-vitro preclinical experiments help in target identification, evaluation of novel therapeutic agents and validation of treatments. Introduction: Diabetes mellitus (DM) is a multifaceted metabolic disorder of multidimensional aetiologies with the cardinal feature of chronic hyperglycemia. To avoid or minimize late complications of diabetes and related costs, primary prevention and early treatment are therefore necessary. Due to its chronic manifestations, new treatment strategies need to be developed, because of the limited effectiveness of the current therapies. Methods: The study included electronic databases such as Pubmed, Web of Science and Scopus. The datasets were searched for entries of studies up to June, 2018. Results: A large number of in-vivo and in-vitro models have been presented for evaluating the mechanism of anti-hyperglycaemic effect of drugs in hormone-, chemically-, pathogen-induced animal models of diabetes mellitus. The advantages and limitations of each model have also been addressed in this review. Conclusion: This review encompasses the wide pathophysiological and molecular mechanisms associated with diabetes, particularly focusing on the challenges associated with the evaluation and predictive validation of these models as ideal animal models for preclinical assessments and discovering new drugs and therapeutic agents for translational application in humans. This review may further contribute to discover a novel drug to treat diabetes more efficaciously with minimum or no side effects. Furthermore, it also highlights ongoing research and considers the future perspectives in the field of diabetes.


2001 ◽  
Vol 17 (4) ◽  
pp. 205-216 ◽  
Author(s):  
Allan E. Karlsen ◽  
Thomas Sparre ◽  
Karin Nielsen ◽  
Jørn Nerup ◽  
Flemming Pociot

Type 1 (insulin-dependent) diabetes mellitus (T1DM) is associated with a specific destruction of the insulin-producing beta-cells in the islets of Langerhans. Several factors, e.g. genetic, environmental and immunologial, may be involved in the etiology and pathogenesis of T1DM. Autoreactive Tand B-lymphocytes, together with macrophages infiltrate the islets during the pathogenesis, releasing a mixture of cytokines, demonstrated to be specifically toxic to the beta-cells within the islets. Our goal is to understand the molecular mechanisms responsible for the beta-cell specific toxicity enabling us to design novel intervention strategies in T1DM. The proteome approach allows us to get a detailed picture of the beta-cell proteins, which change expression level or are post-translationally modified in differentin vitroandin vivomodels of T1DM-associated beta-cell destruction. Combining the information obtained from this extended proteome approach, with that of genetic-, transcriptome- and candidategene approaches, we believe that it is possible to reach this goal.


Sign in / Sign up

Export Citation Format

Share Document