scholarly journals Re-Evaluation of the Podosphaera tridactyla Species Complex in Australia

2021 ◽  
Vol 7 (3) ◽  
pp. 171
Author(s):  
Reannon L. Smith ◽  
Tom W. May ◽  
Jatinder Kaur ◽  
Tim I. Sawbridge ◽  
Ross C. Mann ◽  
...  

The Podosphaera tridactyla species complex is highly variable morphologically and causes powdery mildew on a wide range of Prunus species, including stone fruit. A taxonomic revision of the Po. tridactyla species complex in 2020 identified 12 species, seven of which were newly characterised. In order to clarify which species of this complex are present in Australia, next generation sequencing was used to isolate the fungal ITS+28S and host matK chloroplast gene regions from 56 powdery mildew specimens of stone fruit and ornamental Prunus species accessioned as Po. tridactyla or Oidium sp. in Australian reference collections. The specimens were collected in Australia, Switzerland, Italy and Korea and were collected from 1953 to 2018. Host species were confirmed using matK phylogenetic analysis, which identified that four had been misidentified as Prunus but were actually Malusprunifolia. Podosphaera species were identified using ITS+28S phylogenetic analysis, recognising three Podosphaera species on stone fruit and related ornamental Prunus hosts in Australia. These were Po.pannosa, the rose powdery mildew, and two species in the Po. tridactyla species complex: Po. ampla, which was the predominant species, and a previously unidentified species from peach, which we describe here as Po. cunningtonii.

2020 ◽  
Vol 4 (6) ◽  
Author(s):  
Nikolas P Johnston ◽  
James F Wallman ◽  
Thomas Pape

Abstract A taxonomic revision of all Australian species of Metopia Meigen (Sarcophagidae: Miltogramminae) is completed using an integrated approach combining molecular and morphological data. Metopia nudibasis (Malloch) is redescribed as a species complex and a new endemic Australian species, Metopia sputnik sp. n., is described. Evidence is presented that Metopia sauteri (Townsend) is absent from Australia and this species is therefore removed from the known Australian fauna. Molecular phylogenetics is used to reconstruct interspecific and generic relationships and support morphology-based species hypotheses. Phylogenetic analysis splits Metopia Meigen into two clades, separated by Aenigmetopia Malloch, rendering the former genus nonmonophyletic. The implications of this are discussed.


Phytotaxa ◽  
2020 ◽  
Vol 447 (4) ◽  
pp. 276-282
Author(s):  
ROLAND KIRSCHNER ◽  
HERMINE LOTZ-WINTER ◽  
MEIKE PIEPENBRING

Powdery mildews are common pathogens on wild elm trees as well as on planted ornamentals in Asia and Europe. The taxonomy of the powdery Erysiphe species on elms (Ulmus spp., Ulmaceae) is complicated by taxonomical changes and inconsistently labelled DNA data in databases and publications. Based on morphology and phylogenetic analysis of new collections from Germany and Taiwan, E. ulmi from Europe is revised, while specimens on U. parvifolia from East Asia revealed a separate clade indicating an undescribed species. Morphologically, both species can be distinguished by length of the foot cell of the conidiophore, whereas the teleomorph characteristics were not significantly distinctive.


Plant Disease ◽  
2021 ◽  
Author(s):  
Michele S. Wiseman ◽  
Taylor Bates ◽  
Andrea Garfinkel ◽  
Cynthia M. Ocamb ◽  
David H. Gent

Oregon is the second largest producer of hemp in the United States with 25,900 ha of hemp licensed to growers in 2019, a nearly six-fold increase over the previous year (Perkowski 2019, Capital Press). Industrial hemp has a wide range of uses including textiles to nutritional supplements; in Oregon, hemp has become one of the most economically promising crops and is mainly cultivated for cannabidiol (CBD) production. Between 2018 and 2019, multiple independent greenhouse growers in western Oregon reported powdery mildew-like signs and symptoms on leaves and buds of several Cannabis sativa cultivars, including ‘Cherry Wine’. Signs of the disease started as small, white, powdery patches, typically on the adaxial sides of leaves, and progressed to coalescent colonies on leaves, stems, and buds. Fungi present on diseased tissues had unbranched hyaline conidiophores that measured 140 to 250 µm and grew erect from caulicolous and amphigenous mycelium (n = 15). Foot cells were cylindrical, often tapered at one or both ends, and measured 80 to 117 × 9.5 to 11.9 µm (n = 15). Conidia were catenescent, hyaline, ellipsoidal to barrel-shaped, lacked fibrosin bodies, and measured 24 to 34 × 12 to 18 µm (n = 50). No chasmothecia were observed. Morphological observations overlapped with several Golovinomyces spp. Including G. ambrosiae, G. cichoracearum, and G. spadiceus (Braun and Cook 2012). Identification was confirmed by bidirectional sequencing and phylogenetic analysis of 1,457 nucleotides from the concatenated internal transcribed spacer (ITS), 28S large ribosomal subunit, and beta-tubulin (TUB2) regions of two isolates using primer pairs ITS1/ITS4 and NL1/LR5, and TubF1/TubR1 respectively (Mori et al. 2000, Qiu et al. 2020, Vilgalys and Hester 1990, White et al. 1990; GenBank Acc. No.: MW248121 to MW248124, MW265971 to MW265972). The Oregon hemp isolates grouped (bootstrap value = 100) in a monophyletic clade with G. ambrosiae accessions from Qiu et al. (2020). Pathogenicity was confirmed by transferring conidia by leaf rub inoculation onto 2-to 4-week-old ‘Cherry Wine’ potted plants and incubated outdoors at 12 to 22°C. Control plants were mock-inoculated using healthy leaves. Powdery mildew symptoms developed on inoculated plants approximately 14 to 21 days later; control plants were asymptomatic. Identification was confirmed by morphological characterization and sequencing using the aforementioned primers. The hemp isolates were also able to infect detached leaves of Humulus lupulus ‘Symphony’ via similar inoculations; however, colony development on ‘Symphony’ was slow and sporulation sparse as was reported by Weldon et al. (2020). Golovinomyces spp. have also been reported on hemp in Kentucky (Szarka et al. 2019), Ohio (Farinas and Peduto Hand 2020), and New York (Weldon et al. 2020). Although reported as G. spadiceus, these reports are also likely G. ambrosiae according to new taxonomic revision of the genus (Qiu et al. 2020). This is the first known report of Golovinomyces ambrosiae causing powdery mildew on hemp in Oregon (OSC 171893). While powdery mildew on hemp currently appears most severe in protected cultivation, rapid expansion of hemp cultivation and introduction of new CBD varieties throughout Oregon could lead to increased powdery mildew risk in outdoor cultivation.


Author(s):  
Anna Lavecchia ◽  
Matteo Chiara ◽  
Caterina De Virgilio ◽  
Caterina Manzari ◽  
Carlo Pazzani ◽  
...  

Abstract Staphylococcus cohnii (SC), a coagulase-negative bacterium, was first isolated in 1975 from human skin. Early phenotypic analyses led to the delineation of two subspecies (subsp.), Staphylococcus cohnii subsp. cohnii (SCC) and Staphylococcus cohnii subsp. urealyticus (SCU). SCC was considered to be specific to humans whereas SCU apparently demonstrated a wider host range, from lower primates to humans. The type strains ATCC 29974 and ATCC 49330 have been designated for SCC and SCU, respectively. Comparative analysis of 66 complete genome sequences—including a novel SC isolate—revealed unexpected patterns within the SC complex, both in terms of genomic sequence identity and gene content, highlighting the presence of 3 phylogenetically distinct groups. Based on our observations, and on the current guidelines for taxonomic classification for bacterial species, we propose a revision of the SC species complex. We suggest that SCC and SCU should be regarded as two distinct species: SC and SU (Staphylococcus urealyticus), and that two distinct subspecies, SCC and SCB (SC subsp. barensis, represented by the novel strain isolated in Bari) should be recognized within SC. Furthermore, since large scale comparative genomics studies recurrently suggest inconsistencies or conflicts in taxonomic assignments of bacterial species, we believe that the approach proposed here might be considered for more general application.


Genome ◽  
2005 ◽  
Vol 48 (4) ◽  
pp. 637-647 ◽  
Author(s):  
M A. Rouf Mian ◽  
Malay C Saha ◽  
Andrew A Hopkins ◽  
Zeng-Yu Wang

Microsatellites or simple sequence repeats (SSRs) are highly useful molecular markers for plant improvement. Expressed sequence tag (EST)-SSR markers have a higher rate of transferability across species than genomic SSR markers and are thus well suited for application in cross-species phylogenetic studies. Our objectives were to examine the amplification of tall fescue EST-SSR markers in 12 grass species representing 8 genera of 4 tribes from 2 subfamilies of Poaceae and the applicability of these markers for phylogenetic analysis of grass species. About 43% of the 145 EST-SSR primer pairs produced PCR bands in all 12 grass species and had high levels of polymorphism in all forage grasses studied. Thus, these markers will be useful in a variety of forage grass species, including the ones tested in this study. SSR marker data were useful in grouping genotypes within each species. Lolium temulentum, a potential model species for cool-season forage grasses, showed a close relation with the major Festuca–Lolium species in the study. Tall wheatgrass was found to be closely related to hexaploid wheat, thereby confirming the known taxonomic relations between these species. While clustering of closely related species was found, the effectiveness of such data in evaluating distantly related species needs further investigations. The phylogenetic trees based on DNA sequences of selected SSR bands were in agreement with the phylogenetic relations based on length polymorphism of SSRs markers. Tall fescue EST-SSR markers depicted phylogenetic relations among a wide range of cool-season forage grass species and thus are an important resource for researchers working with such grass species.Key words: phylogeny, EST-SSR, forage grasses, tall fescue.


Plant Disease ◽  
2010 ◽  
Vol 94 (3) ◽  
pp. 339-344 ◽  
Author(s):  
A. Suthaparan ◽  
Arne Stensvand ◽  
S. Torre ◽  
Maria L. Herrero ◽  
R. I. Pettersen ◽  
...  

The effect of day length on production and germinability of conidia and severity of disease caused by Podosphaera pannosa, the causal agent of rose powdery mildew, was studied. Whole potted plants or detached leaves of Rosa interspecific hybrid ‘Mistral’ were inoculated with P. pannosa and exposed to 0, 12, 18, 20, 22, or 24 h of artificial light per day in growth chambers equipped with mercury lamps. Increasing duration of illumination from 18 to 20 to 24 h per day reduced production of conidia by 22 to 62%. Exposure to 24 h of illumination per day also strongly reduced disease severity compared with 18 h. Our results suggest that increasing day lengths from 18 h per day to 20 to 24 h may suppress the disease significantly and, thereby, reduce the need for fungicide applications against powdery mildew.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Rubayet Elahi ◽  
Ausraful Islam ◽  
Mohammad Sharif Hossain ◽  
Khaja Mohiuddin ◽  
Andrea Mikolon ◽  
...  

The parasites of generaHaemoproteus, Plasmodium,andLeucocytozoonare well-known avian haematozoa and can cause declined productivity and high mortality in wild birds. The objective of the study was to record the prevalence of haematozoan parasites in a wide range of wetland birds in Bangladesh. Six species ofHaemoproteus, seven species ofPlasmodium, one unidentified species ofLeucocytozoon, and one unidentified microfilaria of the genusParonchocercawere found. Data on the morphology, size, hosts, prevalence, and infection intensity of the parasites are provided. The overall prevalence among the birds was 29.5% (95 out of 322 birds). Of those, 13.2% (42 of 319) of birds were infected withHaemoproteusspp., 15.1% withPlasmodiumspp. (48 of 319) and 0.6% withLeucocytozoonspp. (2 of 319). Two birds were positive for bothHaemoproteussp. andPlasmodiumsp. A single resident bird,Ardeola grayii, was found positive for an unidentified microfilaria. Prevalence of infection varied significantly among different bird families. Wild birds of Bangladesh carry several types of haematozoan parasites. Further investigation with a larger sample size is necessary to estimate more accurately the prevalence of haematozoan parasites among wild birds as well as domestic ducks for better understanding of the disease ecology.


Author(s):  
Roxanne Albertha Charles

Abstract The sand tampan, Ornithodoros savignyi (Audouin, 1827), is an economically important soft tick of the Afrotropics parasitising a wide range of livestock and humans. These ticks are known to inflict painful bites which may be fatal in susceptible hosts. Historically thought to be a single species, Ornithodoros savignyi is now considered to be a complex of four tick subspecies based on molecular and morphological studies. They include Ornithodoros (Ornithodoros) kalahariensis, O. (O.) pavimentosus, O. (O.) noorsveldensis and O. (O.) savignyi. As such there may be significant implications for previous biological studies conducted on this tick. Therefore, for the purposes of this review, sand tampan toxicosis and potentially useful biological molecules have been discussed for O. (O.) savignyi sensu lato since most reported work was based on ticks collected from the Kalahari and Lake Chad region. An overview of the host range and vector biology for the O. (O.) savignyi species complex will also be examined.


mSphere ◽  
2018 ◽  
Vol 3 (3) ◽  
Author(s):  
Gregory A. DeIulio ◽  
Li Guo ◽  
Yong Zhang ◽  
Jonathan M. Goldberg ◽  
H. Corby Kistler ◽  
...  

ABSTRACTTheFusarium oxysporumspecies complex (FOSC) is a group of soilborne pathogens causing severe disease in more than 100 plant hosts, while individual strains exhibit strong host specificity. Both chromosome transfer and comparative genomics experiments have demonstrated that lineage-specific (LS) chromosomes contribute to the host-specific pathogenicity. However, little is known about the functional importance of genes encoded in these LS chromosomes. Focusing on signaling transduction, this study compared the kinomes of 12F. oxysporumisolates, including both plant and human pathogens and 1 nonpathogenic biocontrol strain, with 7 additional publicly available ascomycete genomes. Overall,F. oxysporumkinomes are the largest, facilitated in part by the acquisitions of the LS chromosomes. The comparative study identified 99 kinases that are present in almost all examined fungal genomes, forming the core signaling network of ascomycete fungi. Compared to the conserved ascomycete kinome, the expansion of theF. oxysporumkinome occurs in several kinase families such as histidine kinases that are involved in environmental signal sensing and target of rapamycin (TOR) kinase that mediates cellular responses. Comparative kinome analysis suggests a convergent evolution that shapes individualF. oxysporumisolates with an enhanced and unique capacity for environmental perception and associated downstream responses.IMPORTANCEIsolates ofFusarium oxysporumare adapted to survive a wide range of host and nonhost conditions. In addition,F. oxysporumwas recently recognized as the top emerging opportunistic fungal pathogen infecting immunocompromised humans. The sensory and response networks of these fungi undoubtedly play a fundamental role in establishing the adaptability of this group. We have examined the kinomes of 12F. oxysporumisolates and highlighted kinase families that distinguishF. oxysporumfrom other fungi, as well as different isolates from one another. The amplification of kinases involved in environmental signal relay and regulating downstream cellular responses clearly setsFusariumapart from otherAscomycetes. Although the functions of many of these kinases are still unclear, their specific proliferation highlights them as a result of the evolutionary forces that have shaped this species complex and clearly marks them as targets for exploitation in order to combat disease.


Zootaxa ◽  
2018 ◽  
Vol 4514 (4) ◽  
pp. 487
Author(s):  
ANDRÉS R. ACOSTA-GALVIS ◽  
JEFFREY W. STREICHER ◽  
LUIGI MANUELLI ◽  
TRAVIS CUDDY ◽  
RAFAEL O. DE SÁ

Among New World direct-developing frogs belonging to the clade Brachycephaloidea (= Terraranae), there are several genera with uncertain phylogenetic placements. One notable example is the genus Niceforonia Goin & Cochran 1963, which includes three species that are endemic to Colombia. Three specimens of the species Niceforonia nana were collected and for the first time the genus is included in a molecular phylogenetic analysis of mitochondrial (mtDNA; 12S and 16S) and nuclear (nucDNA; TYR and RAG1) markers. Molecular phylogenetic inference based on concatenated and separate mtDNA and nucDNA analyses recovered Niceforonia nana nested within Hypodactylus Hedges et al. 2008, rendering the latter genus paraphyletic. Consequently, herein we place the genus Hypodactylus in the synonymy of Niceforonia to resolve the paraphyly and place Niceforonia in the subfamily Hypodactylinae. Based on our revised concept of the genus Niceforonia we conducted preliminary morphological comparisons using specimens and literature descriptions. Finally, Nicefornia nana is quite divergent from other species of Niceforonia (uncorrected genetic distances of ca. 10% 16S and 7% TYR) suggesting that further taxonomic revision may be warranted. 


Sign in / Sign up

Export Citation Format

Share Document