scholarly journals Fine Root Traits of Pinus koraiensis Varied with Soil Cation Exchange Capacity in Natural Forests

Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 363
Author(s):  
Shuxia Jia ◽  
Xingpeng Li ◽  
Wensheng Sun ◽  
Qian Wang ◽  
Hongwen Liu ◽  
...  

Adaptation of fine root plasticity to soil nutrients heterogeneity in natural forest ecosystems has not been well explored. The study aimed to determine seasonal variations of fine root traits in Pinus koraiensis natural forests and explore the relationship between fine root traits and soil properties. Root and soil samples were collected from the coniferous broad-leaved mixed forest (BP), monospecific P. koraiensis forest (MP), and coniferous mixed forest (CP). Soil available phosphorus (P) content for MP was 31.7% and 39.8% lower than for BP and CP. Soil cation exchange capacity (CEC) for MP was lower by 23.5% and 27.2% than for BP and CP, respectively. In July, specific root lengths and root surface areas for BP and CP (mixed forests) were significantly higher than for MP (monospecific forest). A structural equation model showed that CEC had a significant effect on fine root traits. Root diameter, root volume density, and root surface area density were negatively correlated with CEC. Fine root traits plasticity of P. koraiensis are closely related to soil available nutrient contents, CEC, and species composition at the ecosystem level.

2017 ◽  
Vol 135 ◽  
pp. 242-251 ◽  
Author(s):  
Jalal Shiri ◽  
Ali Keshavarzi ◽  
Ozgur Kisi ◽  
Ursula Iturraran-Viveros ◽  
Ali Bagherzadeh ◽  
...  

1971 ◽  
Vol 51 (3) ◽  
pp. 405-410
Author(s):  
A. K. Ballantyne

Leaching a silt loam soil (cation exchange capacity 23 meq/100 g) with water containing increasing rates of potassium dust (KCl) indicated that high levels adversely affected germination and yields of wheat as well as response to fertilizer. Germination was greatly reduced by the treatment with 22.4 metric tons per hectare and nearly eliminated by 44.8 tons. The 44.8-ton/ha treatment also greatly reduced the yield of grain, but straw weights were affected very little by increasing rates of potassium dust. Response to fertilizer was also reduced by 22.4 and 44.8 tons. The exchangeable Ca and Mg decreased and K increased as increasing amounts of K dust were leached through the soil. The 44.8-ton treatment decreased the exchangeable Ca from 56.0 to 24.9% and the Mg from 21.2 to 4.9%, and increased the K from 7.2 to 51.9%. It would appear that K salts can be added to the soil, without any adverse effects, until the exchangeable K is increased to about 30%. With the soil under study this took more than 11.2 tons per ha (5 short tons/acre). The application of dolomite ameliorated the effect of excess K.


CATENA ◽  
2017 ◽  
Vol 158 ◽  
pp. 194-200 ◽  
Author(s):  
Yones Khaledian ◽  
Eric C. Brevik ◽  
Paulo Pereira ◽  
Artemi Cerdà ◽  
Mohammed A. Fattah ◽  
...  

2004 ◽  
Vol 35 (1-2) ◽  
pp. 51-67 ◽  
Author(s):  
R. L. Mulvaney ◽  
S. A. Yaremych ◽  
S. A. Khan ◽  
J. M. Swiader ◽  
B. P. Horgan

1970 ◽  
Vol 75 (2) ◽  
pp. 365-367 ◽  
Author(s):  
T. M. Addiscott

Two methods have been used previously to resolve the ‘mineral’ and ‘organic’ fractions of the cation exchange capacities of soils. Williams (1932) and Hallsworth & Wilkinson (1958) used multiple regression analysis to relate cation exchange capacity (CEC) in several soils to percentage organic matter (OM) and percentage clay, and thence to calculate the average values of the CECs of OM and clay. For individual soils, Davies & Davies (1965) and Clark & Nichol (1968) measured the CEC before and after oxidizing the OM with hydrogen peroxide.


Sign in / Sign up

Export Citation Format

Share Document