scholarly journals Pygidial Glands in Carabidae, an Overview of Morphology and Chemical Secretion

Life ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 562
Author(s):  
Anita Giglio ◽  
Maria Luigia Vommaro ◽  
Pietro Brandmayr ◽  
Federica Talarico

Predator community structure is an important selective element shaping the evolution of prey defence traits and strategies. Carabid beetles are one of the most diverse families of Coleoptera, and their success in terrestrial ecosystems is related to considerable morphological, physiological, and behavioural adaptations that provide protection against predators. Their most common form of defence is the chemical secretion from paired abdominal pygidial glands that produce a heterogeneous set of carboxylic acids, quinones, hydrocarbons, phenols, aldehydes, and esters. This review attempts to update and summarise what is known about the pygidial glands, with particular reference to the morphology of the glands and the biological function of the secretions.

Author(s):  
Yilin Qian ◽  
Kunihiro Okano ◽  
Miwa Kodato ◽  
Michiko Arai ◽  
Takeru Yanagiya ◽  
...  

Abstract Toxic cyanobacterial blooms frequently develop in eutrophic freshwater bodies worldwide. Microcystis species produce microcystins (MCs) as a cyanotoxin. Certain bacteria that harbor the mlr gene cluster, especially mlrA, are capable of degrading MCs. However, MCs-degrading bacteria may possess or lack mlr genes (mlr+ and mlr− genotypes, respectively). In this study we investigated the genotype that predominantly contributes to biodegradation and cyanobacterial predator community structure with change in total MCs concentration in an aquatic environment. The two genotypes co-existed but mlr+ predominated, as indicated by the negative correlation between mlrA gene copy abundance and total MCs concentration. At the highest MCs concentrations, predation pressure by Phyllopoda, Copepoda, and Monogononta (rotifers) was reduced; thus, MCs may be toxic to cyanobacterial predators. The results suggest cooperation between MCs-degrading bacteria and predators may reduce Microcystis abundance and MCs concentration.


Author(s):  
Raoul Manenti ◽  
Nicola Zanetti ◽  
Roberta Pennati ◽  
Giorgio Scarì

<p>In several cases, human impact on water bodies and on their freshwater communities is detrimental, but in some cases the human activity may favour and enhance the biodiversity of small water bodies, as traditional cattle drinking pools. Despite their small size, small water bodies may constitute hot spot of biodiversity often representing the only lentic aquatic biotope in landscapes where superficial water lacks or flows in lotic environments like creeks and streams. Predators are good indicators of biodiversity in ponds and give information of food chain web complexity. In particular, semi-aquatic predators like amphibians and dragonflies may account for a substantial percentage of energy flow between aquatic and terrestrial ecosystems. In this study, we evaluated the conservation value of traditional cattle drinking pools building by assessing the factors determining the occurrence and distribution of the semi-aquatic predators. From April to August 2015, we investigated 30 distinct pools recording several abiotic and biotic environmental variables. We detected 4 semi-aquatic predators: <em>Salamandra salamandra</em> larvae, <em>Triturus carnifex</em>, <em>Aeshna</em> sp. larvae and <em>Libellula</em> sp. larvae. Abiotic features played a major role in shaping the predator community that resulted linked to stable, with no dryness period, and large drinking pools. Invertebrate prey biomass was not particularly important, while vegetation cover and occurrence of unpalatable tadpoles were the most important biotic features of the pools. Our study provides novel evidence on the importance of cattle drinking pools management to preserve biodiversity especially in areas where traditional pastoral activity is disappearing.</p>


2021 ◽  
Vol 9 ◽  
Author(s):  
Noelline Tsafack ◽  
Paulo A. V. Borges ◽  
Yingzhong Xie ◽  
Xinpu Wang ◽  
Simone Fattorini

Species abundance distributions (SADs) are increasingly used to investigate how species community structure changes in response to environmental variations. SAD models depict the relative abundance of species recorded in a community and express fundamental aspects of the community structure, namely patterns of commonness and rarity. However, the influence of differences in environmental conditions on SAD characteristics is still poorly understood. In this study we used SAD models of carabid beetles (Coleoptera: Carabidae) in three grassland ecosystems (desert, typical, and meadow steppes) in China. These ecosystems are characterized by different aridity conditions, thus offering an opportunity to investigate how SADs are influenced by differences in environmental conditions (mainly aridity and vegetation cover, and hence productivity). We used various SAD models, including the meta-community zero sum multinomial (mZSM), the lognormal (PLN) and Fisher’s logseries (LS), and uni- and multimodal gambin models. Analyses were done at the level of steppe type (coarse scale) and for different sectors within the same steppe (fine scale). We found that the mZSM model provided, in general, the best fit at both analysis scales. Model parameters were influenced by the scale of analysis. Moreover, the LS was the best fit in desert steppe SAD. If abundances are rarefied to the smallest sample, results are similar to those without rarefaction, but differences in models estimates become more evident. Gambin unimodal provided the best fit with the lowest α-value observed in desert steppe and higher values in typical and meadow steppes, with results which were strongly affected by the scale of analysis and the use of rarefaction. Our results indicate that all investigated communities are adequately modeled by two similar distributions, the mZSM and the LS, at both scales of analyses. This indicates (1) that all communities are characterized by a relatively small number of species, most of which are rare, and (2) that the meta-communities at the large scale maintain the basic SAD shape of the local communities. The gambin multimodal models produced exaggerated α-values, which indicates that they overfit simple communities. Overall, Fisher’s α, mZSM θ, and gambin α-values were substantially lower in the desert steppe and higher in the typical and meadow steppes, which implies a decreasing influence of environmental harshness (aridity) from the desert steppe to the typical and meadow steppes.


Author(s):  
André M. de Roos ◽  
Lennart Persson

This chapter discusses mixed interactions from a different perspective, taking as its point of departure the models for a structured prey, structured predator community with exclusive resources for both prey and predator that were analyzed in Chapter 6. For both the stage-structured biomass model and the size-structured model based on Kooijman–Metz energetics discussed in Chapter 6, it investigates how an increasing resource overlap between predators and consumers will change community structure and dynamics. The end point of such increasing resource overlap is a model in which consumers and predators compete for the same shared resource and adult predators feed partially or exclusively on juvenile, small-size consumers. This end point is close to the models analyzed by van de Wolfshaar, de Roos, and Persson (2006) and Hin, Schellekens, et al. (2011); the results will be discussed in the light of those publications.


2021 ◽  
Vol 657 ◽  
pp. 73-91
Author(s):  
RP Harbour ◽  
CR Smith ◽  
C Simon-Nutbrown ◽  
M Cecchetto ◽  
E Young ◽  
...  

Fjordic systems in temperate and Arctic regions often feature extensive kelp forests at their shallow coastal margins as well as extensive terrestrial forests. Detrital export from these shallow-water and terrestrial ecosystems is an important source of carbon for deep-sea communities in the form of kelp and wood falls. Benthic landers with experimental substrates (wood blocks and kelp parcels) were deployed for 10 mo at a depth of 530 m in a deep Norwegian fjord to investigate and compare macro- and megabenthic community structure, biodiversity and ecosystem functioning on kelp and wood falls. Results revealed that while wood and kelp falls can support a similar number of species and abundance of fauna, they support significantly different faunal communities. Biomass and secondary production on both wood and kelp substrates were significantly greater than in the control samples. Secondary production estimates were similar or higher than those reported from soft-sediment ecosystems at shallower European marine sites. Biological trait analysis showed that macrofaunal assemblages were distinct between the kelp and wood, providing evidence for differences in ecosystem function between the substrates. This case study from a deep-sea fjord in Norway provides clear evidence that while wood and kelp organic falls can support similar abundances of fauna, the associated benthic biodiversity, community structure and ecosystem functioning can be dramatically different between these substrates. The work presented here aims to provide information that is useful in assessing the extent of anthropogenic impacts on deep fjord ecosystems with respect to informing future conservation and management strategies.


2014 ◽  
Vol 23 (15) ◽  
pp. 3790-3798 ◽  
Author(s):  
Jonathan G. Lundgren ◽  
Janet K. Fergen

2021 ◽  
Vol 13 (10) ◽  
pp. 5555
Author(s):  
Jinling Zhao ◽  
Jiale Chen ◽  
Honghui Wu ◽  
Linghao Li ◽  
Fengjuan Pan

Soil nematodes are one of the most important components in terrestrial ecosystems and the critical factor driving the belowground process. The grasslands of Northeast China have been subject to mowing for ages, which theoretically should have had substantial effects on the processes associated with soil nematodes. However, relevant studies have barely been conducted to date. This study examined variations in soil nematode abundance, biomass, diversity, and community structure, with respect to varying mowing frequencies. The results showed that a higher mowing frequency significantly reduced the abundance of soil nematodes, biomass, diversity, and community structure stability in the ecosystem, while intermediate mowing frequency enhanced these parameters to different extents. Our findings indicate that the changing patterns of the nematode indices with mowing frequency conform to the intermediate disturbance theory. This study provides a theoretical basis for formulating grassland-related management measures and maintaining the stability of grassland ecosystems.


Sign in / Sign up

Export Citation Format

Share Document