scholarly journals Comparative Analysis of Computer-Aided Diagnosis and Computer-Assisted Subjective Assessment in Thyroid Ultrasound

Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1148
Author(s):  
Nonhlanhla Chambara ◽  
Shirley Yuk Wah Liu ◽  
Xina Lo ◽  
Michael Ying

The value of computer-aided diagnosis (CAD) and computer-assisted techniques equipped with different TIRADS remains ambiguous. Parallel diagnosis performances of computer-assisted subjective assessments and CAD were compared based on AACE, ATA, EU, and KSThR TIRADS. CAD software computed the diagnosis of 162 thyroid nodule sonograms. Two raters (R1 and R2) independently rated the sonographic features of the nodules using an online risk calculator while blinded to pathology results. Diagnostic efficiency measures were calculated based on the final pathology results. R1 had higher diagnostic performance outcomes than CAD with similarities between KSThR (SEN: 90.3% vs. 83.9%, p = 0.57; SPEC: 46% vs. 51%, p = 0.21; AUROC: 0.76 vs. 0.67, p = 0.02), and EU (SEN: 85.5% vs. 79%, p = 0.82; SPEC: 62% vs. 55%, p = 0.27; AUROC: 0.74 vs. 0.67, p = 0.06). Similarly, R2 had higher AUROC and specificity but lower sensitivity than CAD (KSThR-AUROC: 0.74 vs. 0.67, p = 0.13; SPEC: 61% vs. 46%, p = 0.02 and SEN: 75.8% vs. 83.9%, p = 0.31, and EU-AUROC: 0.69 vs. 0.67, p = 0.57, SPEC: 64% vs. 55%, p = 0.19, and SEN: 71% vs. 79%, p = 0.51, respectively). CAD had higher sensitivity but lower specificity than both R1 and R2 with AACE for 114 specified nodules (SEN: 92.5% vs. 88.7%, p = 0.50; 92.5% vs. 79.3%, p = 0.02, and SPEC: 26.2% vs. 54.1%, p = 0.001; 26.2% vs. 62.3%, p < 0.001, respectively). All diagnostic performance outcomes were comparable for ATA with 96 specified nodules. Computer-assisted subjective interpretation using KSThR is more ideal for ruling out papillary thyroid carcinomas than CAD. Future larger multi-center and multi-rater prospective studies with a diverse representation of thyroid cancers are necessary to validate these findings.

Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1759 ◽  
Author(s):  
Nonhlanhla Chambara ◽  
Michael Ying

Computer-aided diagnosis (CAD) techniques have emerged to complement qualitative assessment in the diagnosis of benign and malignant thyroid nodules. The aim of this review was to summarize the current evidence on the diagnostic performance of various ultrasound CAD in characterizing thyroid nodules. PUBMED, EMBASE and Cochrane databases were searched for studies published until August 2019. The Quality Assessment of Studies of Diagnostic Accuracy included in Systematic Review 2 (QUADAS-2) tool was used to assess the methodological quality of the studies. Reported diagnostic performance data were analyzed and discussed. Fourteen studies with 2232 patients and 2675 thyroid nodules met the inclusion criteria. The study quality based on QUADAS-2 assessment was moderate. At best performance, grey scale CAD had a sensitivity of 96.7% while Doppler CAD was 90%. Combined techniques of qualitative grey scale features and Doppler CAD assessment resulted in overall increased sensitivity (92%) and optimal specificity (85.1%). The experience of the CAD user, nodule size and the thyroid malignancy risk stratification system used for interpretation were the main potential factors affecting diagnostic performance outcomes. The diagnostic performance of CAD of thyroid ultrasound is comparable to that of qualitative visual assessment; however, combined techniques have the potential for better optimized diagnostic accuracy.


2020 ◽  
Author(s):  
Pengfei Sun ◽  
Chen Chen ◽  
Weiqi Wang ◽  
Lei Liang ◽  
Dan Luo ◽  
...  

BACKGROUND Computer-aided diagnosis (CAD) is a useful tool that can provide a reference for the differential diagnosis of benign and malignant breast lesion. Previous studies have demonstrated that CAD can improve the diagnostic performance. However, conventional ultrasound (US) combined with CAD were used to adjust the classification of category 4 lesions has been few assessed. OBJECTIVE The objective of our study was to evaluate the diagnosis performance of conventional ultrasound combined with a CAD system S-Detect in the category of BI-RADS 4 breast lesions. METHODS Between December 2018 and May 2020, we enrolled patients in this study who received conventional ultrasound and S-Detect before US-guided biopsy or surgical excision. The diagnostic performance was compared between US findings only and the combined use of US findings with S-Detect, which were correlated with pathology results. RESULTS A total of 98 patients (mean age 51.06 ±16.25 years, range 22-81) with 110 breast masses (mean size1.97±1.38cm, range0.6-8.5) were included in this study. Of the 110 breast masses, 64/110 (58.18%) were benign, 46/110 (41.82%) were malignant. Compared with conventional ultrasound, a significant increase in specificity (0% to 53.12%, P<.001), accuracy (41.81% to70.19%, P<.001) were noted, with no statistically significant decrease on sensitivity(100% to 95.65% ,P=.48). According to S-Detect-guided US BI-RADS re-classification, 30 out of 110 (27.27%) breast lesions underwent a correct change in clinical management, 74of 110 (67.27%) breast lesions underwent no change and 6 of 110 (5.45%) breast lesions underwent an incorrect change in clinical management. The biopsy rate decreased from 100% to 67.27 % (P<.001).Benign masses among subcategory 4a had higher rates of possibly benign assessment on S-Detect for the US only (60% to 0%, P<.001). CONCLUSIONS S-Detect can be used as an additional diagnostic tool to improve the specificity and accuracy in clinical practice. S-Detect have the potential to be used in downgrading benign masses misclassified as BI-RADS category 4 on US by radiologist, and may reduce unnecessary breast biopsy. CLINICALTRIAL none


2021 ◽  
Author(s):  
Zheng Wang ◽  
Qingjun Qian ◽  
Jianfang Zhang ◽  
Caihong Duo ◽  
Wen He ◽  
...  

Abstract Background: The diagnosis of pneumoconiosis relies primarily on chest radiographs and exhibits significant variability between physicians. Computer-aided diagnosis (CAD) can improve the accuracy and consistency of these diagnoses. However, CAD based on machine learning requires extensive human intervention and time-consuming training. As such, deep learning has become a popular tool for the development of CAD models. In this study, the clinical applicability of CAD based on deep learning was verified for pneumoconiosis patients.Methods: Chest radiographs were collected from 5424 occupational health examiners who met the inclusion criteria. The data were divided into training, validation, and test sets. The CAD algorithm was then trained and applied to processing of the validation set, while the test set was used to evaluate diagnostic efficacy. Three junior and three senior physicians provided independent diagnoses using images from the test set and a comprehensive diagnosis for comparison with the CAD results. A receiver operating characteristic (ROC) curve was used to evaluate the diagnostic efficiency of the proposed CAD system. A McNemar test was used to evaluate diagnostic sensitivity and specificity for pneumoconiosis, both before and after the use of CAD. A kappa consistency test was used to evaluate the diagnostic consistency for both the algorithm and the clinicians.Results: ROC results suggested the proposed CAD model achieved high accuracy in the diagnosis of pneumoconiosis, with a kappa value of 0.90. The sensitivity, specificity, and kappa values for the junior doctors increased from 0.86 to 0.98, 0.68 to 0.86, and 0.54 to 0.84, respectively (p<0.05), when CAD was applied. However, metrics for the senior doctors were not significantly different.Conclusion: DL-based CAD can improve the diagnostic sensitivity, specificity, and consistency of pneumoconiosis diagnoses, particularly for junior physicians.


2020 ◽  
Vol 117 (23) ◽  
pp. 12592-12594 ◽  
Author(s):  
Agostina J. Larrazabal ◽  
Nicolás Nieto ◽  
Victoria Peterson ◽  
Diego H. Milone ◽  
Enzo Ferrante

Artificial intelligence (AI) systems for computer-aided diagnosis and image-based screening are being adopted worldwide by medical institutions. In such a context, generating fair and unbiased classifiers becomes of paramount importance. The research community of medical image computing is making great efforts in developing more accurate algorithms to assist medical doctors in the difficult task of disease diagnosis. However, little attention is paid to the way databases are collected and how this may influence the performance of AI systems. Our study sheds light on the importance of gender balance in medical imaging datasets used to train AI systems for computer-assisted diagnosis. We provide empirical evidence supported by a large-scale study, based on three deep neural network architectures and two well-known publicly available X-ray image datasets used to diagnose various thoracic diseases under different gender imbalance conditions. We found a consistent decrease in performance for underrepresented genders when a minimum balance is not fulfilled. This raises the alarm for national agencies in charge of regulating and approving computer-assisted diagnosis systems, which should include explicit gender balance and diversity recommendations. We also establish an open problem for the academic medical image computing community which needs to be addressed by novel algorithms endowed with robustness to gender imbalance.


2019 ◽  
Vol 9 (4) ◽  
pp. 186-193
Author(s):  
Lei Xu ◽  
Junling Gao ◽  
Quan Wang ◽  
Jichao Yin ◽  
Pengfei Yu ◽  
...  

Background: Computer-aided diagnosis (CAD) systems are being applied to the ultrasonographic diagnosis of malignant thyroid nodules, but it remains controversial whether the systems add any accuracy for radiologists. Objective: To determine the accuracy of CAD systems in diagnosing malignant thyroid nodules. Methods: PubMed, EMBASE, and the Cochrane Library were searched for studies on the diagnostic performance of CAD systems. The diagnostic performance was assessed by pooled sensitivity and specificity, and their accuracy was compared with that of radiologists. The present systematic review was registered in PROSPERO (CRD42019134460). Results: Nineteen studies with 4,781 thyroid nodules were included. Both the classic machine learning- and the deep learning-based CAD system had good performance in diagnosing malignant thyroid nodules (classic machine learning: sensitivity 0.86 [95% CI 0.79–0.92], specificity 0.85 [95% CI 0.77–0.91], diagnostic odds ratio (DOR) 37.41 [95% CI 24.91–56.20]; deep learning: sensitivity 0.89 [95% CI 0.81–0.93], specificity 0.84 [95% CI 0.75–0.90], DOR 40.87 [95% CI 18.13–92.13]). The diagnostic performance of the deep learning-based CAD system was comparable to that of the radiologists (sensitivity 0.87 [95% CI 0.78–0.93] vs. 0.87 [95% CI 0.85–0.89], specificity 0.85 [95% CI 0.76–0.91] vs. 0.87 [95% CI 0.81–0.91], DOR 40.12 [95% CI 15.58–103.33] vs. DOR 44.88 [95% CI 30.71–65.57]). Conclusions: The CAD systems demonstrated good performance in diagnosing malignant thyroid nodules. However, experienced radiologists may still have an advantage over CAD systems during real-time diagnosis.


Recent advances in computer-assisted identification support the diagnosis of Pneumonia using imaging. Therefore, there are many activities available for diagnosing pneumonia using Computer-Aided Diagnosis. This paper provides research into the in-depth study strategies used to diagnose pneumonia. The principle intention of this paper is to introduce the study of pneumonia, to visualize the practice of current work in this field, to recognize the leftover issues and future patterns in this field. Pneumonia is numbered eighth among the main ten reasons for death in the US. As per WHO, "consistently it murders around 1.4 million kids younger than five" this is an exceptionally treatable illness. There is subsequently a requirement for investigation and improvement on PC helped tests with the goal that the chances of pneumonia are decreased and patients are treated before they arrive at a deadly region


Sign in / Sign up

Export Citation Format

Share Document