Summary
In this paper, we present results of an experimental investigation of the effects of variations in interfacial tension (IFT) on three-phase relative permeability. We report results that demonstrate the effect of low IFT between two of three phases on the three-phase relative permeabilities.
To create three-phase systems in which IFT can be con-trolled systematically, we used a quaternary liquid system composed of hexadecane(C16), n-butanol (NBA), water (H2O), and isopropanol (IPA). Measured equilibrium phase compositions and IFTs are reported. The reported phase behavior of the quaternary system shows that the H2O-rich phase should represent the "gas" phase, the NBA-rich phase should represent the "oil" phase, and the C16-rich phase should represent the "aqueous" phase. Therefore, we used oil-wet Teflon (PTFE) bead packs to simulate the fluid flow in a water-wet oil reservoir. We determined phase saturations and three-phase relative permeabilities from recovery and pressure-drop data using an extension of the combined Welge/Johnson-Bossler-Naumann (JBN) method to three-phase flow. Measured three-phase relative permeabilities are reported.
The experimental results indicate that the wetting-phase relative permeability was not affected by IFT variation, whereas the other two-phase relative permeabilities were clearly affected. As IFT decreases, the oil and gas phases become more mobile at the same phase saturations. For gas/oil IFTs in the range of 0.03 to 2.3 mN/m, we observed an approximately 10-fold increase in the oil and gas relative permeabilities against an approximately 100-fold decrease in the IFT.
Introduction
Variations in gas and oil relative permeabilities as a function of IFT are of particular importance in the area of compositional processes such as high-pressure gas injection, where oil and gas compositions can vary significantly both spatially and temporally. Because gas-injection processes routinely include three-phase flow (either because the reservoir has been water-flooded previously or because water is injected alternately with gas to improve overall reservoir sweep efficiency), the effect of IFT variations on three-phase relative permeabilities must be delineated if the performance of the gas-injection process is to be predicted accurately. The development of multicontact miscibility in a gas-injection process will create zones of low IFT between gas and oil phases in the presence of water.
Although there have been studies of the effect of low IFT on two-phase relative permeability,1–14 there are limited experimental data published so far analyzing the effect of low IFT on three-phase relative permeabilities.15,16 Most authors have focused on the effect of IFT on oil and solvent relative permeabilities.17 Experimental results show that residual oil saturation and relative permeability are strongly affected by IFT, especially when the IFT is lower than approximately 0.1 mN/m (corresponding to a range of capillary number of 10–2 to 10–3). Bardon and Longeron3 observed that oil relative permeability increased linearly as IFT was reduced from approximately 12.5 mN/m to 0.04 mN/m and that for IFT below 0.04, the oil relative permeability curves shifted more rapidly with further reductions in IFT. Later, Asar and Handy6 showed that oil relative permeability curves began to shift as IFT was reduced below 0.18 mN/m for a gas/condensate system near the critical point.
Delshad et al.15 presented experimental data for low-IFT three-phase relative permeabilities in Berea sandstone cores. They used a brine/oil/surfactant/alcohol mixture that included a microemulsion and excess oil and brine. The measurements were done at steady-state conditions with a constant capillary number of 10–2 between the microemulsion and other phases. The IFTs of microemulsion/oil and microemulsion/brine were low, whereas the IFT between oil and brine was high. They concluded that low-IFT three-phase relative permeabilities are functions of their own saturations only. Amin and Smith18 recently have published experimental data showing that the IFTs for each binary mixture of brine, oil, and gas phases vary as pressure increases(Fig. 1). Fig. 1 shows that the IFT of a gas/oil pair decreases as the pressure increases, whereas the IFTs of the gas/brine and oil/brine pairs approach each other.