scholarly journals With PBDB-T as the Donor, the PCE of Non-Fullerene Organic Solar Cells Based on Small Molecule INTIC Increased by 52.4%

Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1324 ◽  
Author(s):  
Weifang Zhang ◽  
Zicha Li ◽  
Suling Zhao ◽  
Zheng Xu ◽  
Bo Qiao ◽  
...  

At present, most high-performance non-fullerene materials are centered on fused rings. With the increase in the number of fused rings, production costs and production difficulties increase. Compared with other non-fullerenes, small molecule INTIC has the advantages of easy synthesis and strong and wide infrared absorption. According to our previous report, the maximum power conversion efficiency (PCE) of an organic solar cell using PTB7-Th:INTIC as the active layer was 7.27%. In this work, other polymers, PTB7, PBDB-T and PBDB-T-2F, as the donor materials, with INTIC as the acceptor, are selected to fabricate cells with the same structure to optimize their photovoltaic performance. The experimental results show that the optimal PCE of PBDB-T:INTIC based organic solar cells is 11.08%, which, thanks to the open voltage (VOC) increases from 0.80 V to 0.84 V, the short circuit current (JSC) increases from 15.32 mA/cm2 to 19.42 mA/cm2 and the fill factor (FF) increases from 60.08% to 67.89%, then a 52.4% improvement in PCE is the result, compared with the devices based on PTB7-Th:INTIC. This is because the PBDB-T:INTIC system has better carrier dissociation and extraction, carrier transportation and higher carrier mobility.

2015 ◽  
Vol 51 (28) ◽  
pp. 6133-6136 ◽  
Author(s):  
Yao Chen ◽  
Youqin Zhu ◽  
Daobin Yang ◽  
Qian Luo ◽  
Lin Yang ◽  
...  

Asymmetrical squaraine dyes with two aryl groups directly linked to the squaric acid core were synthesized, and exhibited excellent photovoltaic performance.


2020 ◽  
Vol 8 (31) ◽  
pp. 15984-15991 ◽  
Author(s):  
Fangfang Cai ◽  
Hongjian Peng ◽  
Honggang Chen ◽  
Jun Yuan ◽  
Jiefeng Hai ◽  
...  

Acceptor Y22 with an asymmetric hexacyclic A–DA′D–A structure achieved a high PCE of 15.4% and a high Jsc of 24.37 mA cm−2, which are among the best values reported for asymmetric acceptor based binary organic solar cells.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 450 ◽  
Author(s):  
Miron Krassas ◽  
Christos Polyzoidis ◽  
Pavlos Tzourmpakis ◽  
Dimitriοs M. Kosmidis ◽  
George Viskadouros ◽  
...  

A conjugated, ladder-type multi-fused ring 4,7-dithienbenzothiadiazole:thiophene derivative, named as compound ‘T’, was for the first time incorporated, within the PTB7:PC71BM photoactive layer for inverted ternary organic solar cells (TOSCs) realization. The effective energy level offset caused by compound T between the polymeric donor and fullerene acceptor materials, as well as its resulting potential as electron cascade material contribute to an enhanced exciton dissociation, electron transfer facilitator and thus improved overall photovoltaic performance. The engineering optimization of the inverted TOSC, ITO/PFN/PTB7:Compound T(5% v/v):PC71BM/MoO3/Al, resulted in an overall power conversion efficiency (PCE) of 8.34%, with a short-circuit current density (Jsc) of 16.75 mA cm−2, open-circuit voltage (Voc) of 0.74 V and a fill factor (FF) of 68.1%, under AM1.5G illumination. This photovoltaic performance was improved by approximately 12% with respect to the control binary device.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Ruimin Zhou ◽  
Zhaoyan Jiang ◽  
Chen Yang ◽  
Jianwei Yu ◽  
Jirui Feng ◽  
...  

AbstractThe high efficiency all-small-molecule organic solar cells (OSCs) normally require optimized morphology in their bulk heterojunction active layers. Herein, a small-molecule donor is designed and synthesized, and single-crystal structural analyses reveal its explicit molecular planarity and compact intermolecular packing. A promising narrow bandgap small-molecule with absorption edge of more than 930 nm along with our home-designed small molecule is selected as electron acceptors. To the best of our knowledge, the binary all-small-molecule OSCs achieve the highest efficiency of 14.34% by optimizing their hierarchical morphologies, in which the donor or acceptor rich domains with size up to ca. 70 nm, and the donor crystals of tens of nanometers, together with the donor-acceptor blending, are proved coexisting in the hierarchical large domain. All-small-molecule photovoltaic system shows its promising for high performance OSCs, and our study is likely to lead to insights in relations between bulk heterojunction structure and photovoltaic performance.


2015 ◽  
Vol 22 (06) ◽  
pp. 1550072
Author(s):  
SUDIP ADHIKARI ◽  
HIDEO UCHIDA ◽  
MASAYOSHI UMENO

In this paper, composite carbon nanotubes (C-CNTs); single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) are synthesized using an ultrasonic nebulizer in a large quartz tube for photovoltaic device fabrication in poly-3-octyl-thiophene (P3OT)/ n - Si heterojunction solar cells. We found that the device fabricated with C-CNTs shows much better photovoltaic performance than that of a device without C-CNTs. The device with C-CNTs shows open-circuit voltage (Voc) of 0.454 V, a short circuit current density (Jsc) of 12.792 mA/cm2, fill factor (FF) of 0.361 and power conversion efficiency of 2.098 %. Here, we proposed that SWCNTs and MWCNTs provide efficient percolation paths for both electron and hole transportation to opposite electrodes and leading to the suppression of charge carrier recombination, thereby increasing the photovoltaic device performance.


2020 ◽  
Vol 8 (15) ◽  
pp. 7405-7411 ◽  
Author(s):  
Jing Gao ◽  
Jinfeng Ge ◽  
Ruixiang Peng ◽  
Chang Liu ◽  
Liang Cao ◽  
...  

Improving the short-circuit current density (Jsc) is a big challenge for gaining highly efficient nonfullerene all-small-molecule organic solar cells (NFASM-OSCs).


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
I. J. Ogundana ◽  
S. Y. Foo

Recently, perovskite solar cells have attracted tremendous attention due to their excellent power conversion efficiency, low cost, simple fabrications, and high photovoltaic performance. Furthermore, the perovskite solar cells are lightweight and possess thin film and semitransparency. However, the nonuniformity in perovskite layer constitutes a major setback to the operation mechanism, performance, reproducibility, and degradation of perovskite solar cells. Therefore, one of the main challenges in planar perovskite devices is the fabrication of high quality films with controlled morphology and least amount of pin-holes for high performance thin film perovskite devices. The poor reproducibility in perovskite solar cells hinders the accurate fabrication of practical devices for use in real world applications, and this is primarily as a result of the inability to control the morphology of perovskites, leading to large variability in the characteristics of perovskite solar cells. Hence, the focus of research in perovskites has been mostly geared towards improving the morphology and crystallization of perovskite absorber by selecting the optimal annealing condition considering the effect of humidity. Here we report a controlled ambient condition that is necessary to grow uniform perovskite crystals. A best PCE of 7.5% was achieved along with a short-circuit current density of 15.2 mA/cm2, an open-circuit voltage of 0.81 V, and a fill factor of 0.612 from the perovskite solar cell prepared under 60% relative humidity.


2019 ◽  
Vol 01 (01) ◽  
pp. 071-077
Author(s):  
Di Zhou ◽  
Zhilin Liu ◽  
Dangqiang Zhu ◽  
Xiyue Yuan ◽  
Xichang Bao ◽  
...  

How to broaden the optical absorption of photovoltaic materials is one of the key issues in the design of high-performance organic solar cells. Nowadays, the sunlight of 400–550 nm wavelength range is not effectively utilized for most small-molecule nonfullerene acceptors. In this work, we proposed the “spliced” strategy of combining the acceptor–donor–acceptor type narrow band-gap small molecules and wide-band-gap perylene diimide (PDI) moieties via a flexible alkyl chain linkage, which could give the superposition effect of the absorption spectra, and three small-molecule acceptors (S1, S2, and S3) were designed based on various end-capping groups with different electron withdrawing abilities. Encouragingly, the as-constructed molecules can well make use of 400–550 nm sunlight with two independent absorption regions. Meanwhile, the aggregation of S1 with a highly planar end-capping group was dominated by both the PDI unit and main skeleton, while S2 and S3 exhibited PDI-controlled aggregation. When fabricated into organic solar cells, S1-based devices achieved a superior efficiency of 3.41% in comparison with those of the other two. The poor photovoltaic performance could be attributed to severe PDI aggregation, which can hinder the charge transfer through the main skeletons. This work could provide a new perspective to modulate optical absorption through the spliced strategy.


2019 ◽  
Vol 7 (18) ◽  
pp. 5381-5384 ◽  
Author(s):  
Qian Zhang ◽  
Yanna Sun ◽  
Xianjie Chen ◽  
Zhijing Lin ◽  
Xin Ke ◽  
...  

A new A2–π–A1–π–A2-type small-molecule donor using a strong electron-withdrawing unit as the central unit was synthesized and its photovoltaic performance was investigated.


Sign in / Sign up

Export Citation Format

Share Document