scholarly journals Effects of Postprocess Hot Isostatic Pressing Treatments on the Mechanical Performance of EBM Fabricated TI-6Al-2Sn-4Zr-2Mo

Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2604 ◽  
Author(s):  
Miguel Lopez ◽  
Christina Pickett ◽  
Edel Arrieta ◽  
Lawrence E. Murr ◽  
Ryan B. Wicker ◽  
...  

An essentially fully acicular alpha-prime martensite within an equiaxed grain structure was produced in an Electron Beam Melting (EBM)-fabricated Ti-6Al-2Sn-4Zr-2Mo (Ti6242) alloy using two different Arcam EBM machines: An A2X system employing tungsten filament thermionic electron emission, and a Q20 system employing LaB6 thermionic electron emission. Post-process Hot Isostatic Pressing (HIP) treatment for 2 h at 850, 950, and 1050 °C resulted in grain refinement and equiaxed grain growth along with alpha-prime martensite decomposition to form an intragranular mixture of acicular martensite and alpha at 850 °C, and acicular alpha phase at 950 and 150 °C, often exhibiting a Widmanstätten (basketweave) structure. The corresponding tensile yield stress and ultimate tensile strength (UTS) associated with the grain growth and acicular alpha evolution decreased from ~1 and ~1.1 GPa, respectively, for the as-fabricated Ti6242 alloy to ~0.8 and 0.9 GPa, respectively, for HIP at 1050 °C. The optimum elongation of ~15–16% occurred for HIP at 850 °C; for both EBM systems. Because of the interactive role played by equiaxed grain growth and the intragrain, acicular alpha microstructures, the hardness varied only by ~7% between 41 and 38 HRC.

2018 ◽  
Vol 24 (S1) ◽  
pp. 2300-2301
Author(s):  
C. G. Garay-Reyes ◽  
M. A. Ruiz-Esparza-Rodriguez ◽  
I. Estrada Guel ◽  
S. E. Hernandez-Martinez ◽  
J.L. Hernandez-Rivera ◽  
...  

1998 ◽  
Vol 542 ◽  
Author(s):  
S. Das ◽  
J. J. Beaman ◽  
M. Wohlert ◽  
D. L. Bourell

AbstractThis paper presents the development of Selective Laser Sintering/Hot Isostatic Pressing (SLS/HIP) technology for production of functional high performance components in the titanium alloy Ti-6AI-4V. SLS/HIP is a net shape manufacturing technique that combines and exploits the freeform shaping capability of selective laser sintering and the full densification capability of hot isostatic pressing. The advantages of SLS combined with in situ HIP encapsulation include single step net shape canning, full densification by containerless HIP, no container-powder adverse interactions, reduced pre-processing time, and minimal post-process machining compared to conventional HIP of canned powders. Microstructure and mechanical properties of SLS processed and HIP post-processed Ti-6A1-4V are consistent with conventionally processed material. The potential of SLS/HIP technology was demonstrated by net shape fabricating a component to specification, namely the titanium guidance section housing base for the AIM-9 Sidewinder missile.


1998 ◽  
Vol 13 (12) ◽  
pp. 3399-3410 ◽  
Author(s):  
O. N. Senkov ◽  
N. Srisukhumbowornchai ◽  
M. L. Öveçoglu ◽  
F. H. Froes

A fully dense nanocrystalline compact of the Ti–47Al–3Cr (at. %) alloy was produced by mechanical alloying and hot isostatic pressing at 725 °C. Microstructure characteristics and grain growth behavior of this compact were studied after annealing for up to 800 h in the temperature range of 725 to 1200 °C, using analytical transmission electron microscopy techniques. The temperature and time dependencies of the grain sizes and the grain size distributions were determined. The grain growth occurred, with a timeand temperature-invariant single-peak grain size distribution (when normalized by the mean grain size), which was consistent with normal grain growth. The experimentally measured grain growth exponent decreased from 10 to 4.6 when the temperature was increased. The grain growth kinetics was described by a single thermally activated rate process limited by a permanent pinning force on the grain boundaries. The microhardness decreased on annealing and followed the Hall–Petch relationship with the parameters Hυo = 5.8 GPa and KH = 1.6 MPa m0.5.


Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2495 ◽  
Author(s):  
Isidoro Iván Cuesta ◽  
Emilio Martínez-Pañeda ◽  
Andrés Díaz ◽  
Jesús Manuel Alegre

Additive manufacturing is becoming a technique with great prospects for the production of components with new designs or shapes that are difficult to obtain by conventional manufacturing methods. One of the most promising techniques for printing metallic components is binder jetting, due to its time efficiency and its ability to generate complex parts. In this process, a liquid binding agent is selectively deposited to adhere the powder particles of the printing material. Once the metallic piece is generated, it undergoes a subsequent process of curing and sintering to increase its density (hot isostatic pressing). In this work, we propose subjecting the manufactured component to an additional post-processing treatment involving the application of a high hydrostatic pressure (5000 bar) at room temperature. This post-processing technique, so-called cold isostatic pressing (CIP), is shown to increase the yield load and the maximum carrying capacity of an additively manufactured AISI 316L stainless steel. The mechanical properties, with and without CIP processing, are estimated by means of the small punch test, a suitable experimental technique to assess the mechanical response of small samples. In addition, we investigate the porosity and microstructure of the material according to the orientations of layer deposition during the manufacturing process. Our observations reveal a homogeneous distribution independent of these orientations, evidencing thus an isotropic behaviour of the material.


2013 ◽  
Vol 88 (9-10) ◽  
pp. 2636-2640 ◽  
Author(s):  
J. Martínez ◽  
B. Savoini ◽  
M.A. Monge ◽  
A. Muñoz ◽  
D.E.J. Armstrong ◽  
...  

2018 ◽  
pp. 86-90
Author(s):  
Алексей Александрович Педаш ◽  
Владимир Валериевич Клочихин ◽  
Тамара Александровна Митина ◽  
Валерий Григорьевич Шило

The composition, structure and mechanical properties of samples obtained from the titanium alloy Ti-6Al-4V, by selective laser melting and electron beam melting processes regarding production of responsible aviation parts were carrying-out at present article.A comparative study of macro- and microstructure, mechanical properties has been carried out after inherent of Ti-6Al-4V heat treatment with or without prior hot isostatic pressing.It was established that the advent in specimens fractures and microstructure pores and non-melt inclusions of a granules condition obligatory hot isostatic pressing of a responsible parts when this kinds of defects significantly releases and correspondingly best complex of mechanical properties are obtained.The powders from titanium Ti-6Al-4V alloy were produce by inert gas (argon) spraying process and had a different particle sizing distribution: 20-50 microns for selective laser melting and 45-105 microns for electron beam melting.The microstructure of the specimens prepared using the studied production processes features an elongated lamellar alpha phase in the transformated epitaxially grown beta-matrix and is typical for Ti-6Al-4V alloy in a heat-treated condition.It has been noted that the lamellar alpha phase in the structure of the studied specimens after hot isostatic pressing is distinguished by larger sizes in width as compared to the specimens prior to hot isostatic pressing processing.Mechanical properties of the specimens produced by selective laser melting or electron beam melting processes meet the specification requirements. Hot isostatic pressing processing results in a remarkable improvement of the impact strength.  Authors should be pointed out that application of additive technologies in the manufacture of aerospace parts requires extensive research&development works, and testing efforts to confirm repeatability of alloy characteristics. A mandatory procedure of the production process and material approval shall be conducted to ensure compliance with aircraft flight safety standards and regulations.


2017 ◽  
Vol 23 (4) ◽  
pp. 720-726 ◽  
Author(s):  
Hany Hassanin ◽  
Khamis Essa ◽  
Chunlei Qiu ◽  
Ali M. Abdelhafeez ◽  
Nicholas J.E. Adkins ◽  
...  

Purpose The purpose of this study is to develop a manufacturing technology using hybrid selective laser melting/hot isostatic pressing (SLM/HIP) process to produce full density net-shape components more rapidly and at lower cost than processing by SLM alone. Design/methodology/approach Ti-6Al-4V powder was encapsulated in situ by the production of as-SLMed shell prior to the HIP process. After HIPping, the SLM shell is an integral part of the final component. Finite element (FE) modelling based on pure plasticity theory of porous metal coupled with an iterative procedure has been adopted to simulate HIPping of the encapsulated Ti-6Al-4V powder and SLMed shell. Two demonstrator parts have been modelled, designed, produced and experimentally validated. Geometrical analysis and microstructural characterisation have been carried out to demonstrate the efficiency of the process. Findings The FE model is in agreement with the measured data obtained and confirms that the design of the shell affects the resulting deformed parts. In addition, the scanning electron microscope (SEM) and Electron backscatter diffraction EBSD (EBSD) of the interior and exterior parts reveal a considerably different grain structure and crystallographic orientation with a good bonding between the SLMed shell and HIPped powder. Originality/value An approach to improve SLM productivity by combining it with HIP is developed to further innovate the advanced manufacturing field. The possibility of the hybrid SLS/HIP supported by FEA simulation as a net shape manufacturing process for fabrication of high performance parts has been demonstrated.


Sign in / Sign up

Export Citation Format

Share Document