scholarly journals Finite Element Simulation and Multi-Factor Stress Prediction Model for Cement Concrete Pavement Considering Void under Slab

Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5294
Author(s):  
Bangyi Liu ◽  
Yang Zhou ◽  
Linhao Gu ◽  
Xiaoming Huang

Uneven support as result of voids beneath concrete slabs can lead to high tensile stresses at the corner of the slab and eventually cause many forms of damage, such as cracking or faulting. Three-dimensional (3D) finite element models of the concrete pavement with void are presented. Mesh convergence analysis was used to determine the element type and mesh size in the model. The accuracy of the model is verified by comparing with the calculation results of the code design standards in China. The reliability of the model is verified by field measurement. The analysis shows that the stresses are more affected at the corner of the slab than at the edge. Impact of void size and void depth at the slab corner on the slab stress are similar, which result in the change of the position of the maximum tensile stress. The maximum tensile stresses do not increase with the increase in the void size for relatively small void size. The maximum tensile stress increases rapidly with the enlargement in the void size when the size is ≥0.4 m. The increments of maximum tensile stress can reach 183.7% when the void size is 1.0 m. The increase in slab thickness can effectively reduce maximum tensile stress. A function is established to calculate the maximum tensile stress of the concrete slab. The function takes into account the void size, the slab thickness and the vehicle load. The reliability of the function was verified by comparing the error between the calculated and simulated results.

2021 ◽  
Author(s):  
Liu Bangyi ◽  
Huang Xiaoming

Uneven support as result of voids beneath concrete slabs can lead to high tensile stresses at the corner of the slab and eventually cause many forms of damage, such as cracking or faulting. Three-dimensional (3D) finite element models of the concrete pavement with void are presented. The accuracy of the model is verified by two methods. The analysis shows that the impact of void size and void depth at the slab corner on the slab stress are similar, which result in the change of the position of the maximum tensile stress. The maximum tensile stresses do not increase with the increase of the void size for relatively small void size. The maximum tensile stress increases rapidly with the enlargement in the void size when the size≥0.4m. The increments of maximum tensile stress can reach 183.7% when the void size are 1.0m. The increase of slab thickness can effectively reduce maximum tensile stress. A function is established to calculate the maximum tensile stress of the concrete slab. The function takes into account the void size and the slab thickness. The reliability of the function was verified by comparing the error between the calculated and simulated results.


2011 ◽  
Vol 243-249 ◽  
pp. 4075-4079
Author(s):  
Bin Yang ◽  
Chung Tong Cheng ◽  
Li Fang Huang

A 3D finite element model is used to investigate the state of load stress developed in concrete pavement with dowel bar under the effect of typical pavement damages of pumping area of slab corner and pumping area of transverse joints edge. The results indicate that slab corner stress tends to decrease with the increase of slab thickness and possesses a nonlinear growth as pumping area increases; when the pumping area of slab corner is less than 1.5m×1.5m, the maximum pavement slab tensile stress is less than or close to the load stress in critical loading position. Stress in transverse joints edge also grows in a nonlinear tendency and axle load also grows gradually with the expansion of pumping area, of which the slope of the curve in the relationship between stress and void size is much greater. Whether it is a pumping area of slab corner or pumping area of transverse joints edge, pavement slab deformation and stress are significantly reduced after setting the dowel bar. Therefore, dowel bar can improve the stress state of concrete pavement obviously.


Author(s):  
Samir N. Shoukry

Nonlinear explicit three-dimensional finite element (3-D FE) modeling is used to investigate the performance of the falling weight deflectometer (FWD) test in the evaluation of layer moduli of jointed plain concrete pavements (JPCP) subjected to nonlinear thermal gradient through the slab thickness. Concrete slab separation from the base, in-plane friction at the concrete-base interface, the gravitational forces, and the interface characteristics between dowel bars and surrounding concrete are all represented in the 3-D FE model. Experimental verification of the model is obtained through comparison of the 3-D FE generated response to ( a) the FWD measured deflection basin and ( b) the measured response of an instrumented rigid pavement section located in Ohio to a loaded truck moving at 21.8 m/s (48 mph). Several cases of linear and nonlinear thermal gradients are applied to the model, and deflection basins are obtained. Two backcalculation programs, MODULUS 5.0 and EVERCALC 4.0, are used for prediction of the layer moduli in each case, and the values are compared. The results indicate that thermal curling of the slab due to negative thermal gradient has little effect on the accuracy of backcalculated moduli. Warping of the slab due to positive thermal gradient greatly influences the measured FWD deflection basin and leads to significant errors in the backcalculated moduli. These errors may be minimized if the time an FWD test is conducted falls between the late afternoon and midmorning (from 5:30 p.m. to 9:30 a.m. during summer in West Virginia).


Author(s):  
Ajay Garg

Abstract In high pressure applications, rectangular blocks of steel are used instead of cylinders as pressure vessels. Bores are drilled in these blocks for fluid flow. Intersecting bores with axes normal to each other and of almost equal diameters, produce stresses which can be many times higher than the internal pressure. Experimental results for the magnitude of maximum tensile stress along the intersection contour were available. A parametric finite element model simulated the experimental set up, followed by correlation between finite element analysis and experimental results. Finally, empirical methods are applied to generate models for the maximum tensile stress σ11 at cross bores of open and close ended blocks. Results from finite element analysis and empirical methods are further matched. Design optimization of cross bores is discussed.


1993 ◽  
Vol 20 (4) ◽  
pp. 587-601 ◽  
Author(s):  
Pierre Léger ◽  
Patrick Paultre

Microcomputer finite element analysis of reinforced concrete slab systems can now be routinely performed to produce realistic numerical simulation of three-dimensional structural behaviour. However, an efficient use of this approach requires an automated integration of design and analysis procedures. Guidelines for proper finite element modelling of slab systems are first presented along with simple post-processing algorithms to perform automatically the design or verifications from the analytical results. Numerical applications on simple slab systems subjected to uniform and concentrated loads are then used to illustrate the relative performance between finite element analyses and the equivalent frame method. Key words: microcomputer, reinforced concrete slab, finite element method, structural design.


2012 ◽  
Vol 178-181 ◽  
pp. 1152-1155 ◽  
Author(s):  
Luo Ke Li ◽  
Yun Liang Li ◽  
Yi Qiu Tan ◽  
Zhong Jun Xue

In a jointed plain concrete pavements, the dowel bar system are used to provide lateral load transfer across transverse joint. Corrosion of commonly used steel dowel in engineering practice reduces their service life and costs considerable maintenance and repair spending for concrete pavements. The objective of this study focus primarily on the performance of none eroded GFRP dowel on LTE( load transfer efficiency) with the help of a three-dimensional finite-element model. The amount of LTE can be obtained directly from comparing the maximum deflection of the concrete slab and the level tensile stress under the concrete slab. According to the finite element results, the larger-diameter GFRP dowel are found to perform the best in this study.


2011 ◽  
Vol 261-263 ◽  
pp. 1778-1783
Author(s):  
Sheng Jun Shao ◽  
Fang Tao She ◽  
Juan Fang

Xi’an ground fracture, caused by the extraction of groundwater and the movement of fault under soil strata, is a geo-hazard. The movement of ground fracture originates the uneven settlement of upward block and downward block. In Xi’an ground fracture region, the segmented lining structure was adopted in subway tunnel to pass through the ground fracture, so as to adapt for the uneven settlement. Three-dimensional elastic-plastic finite difference method was applied to simulate the initial lining structure, second segmented lining structure, surrounding soils and ground fracture. The horizontal and vertical displacement of segmented lining structure, surrounding soils pressure and internal force of segmented lining structure in subway tunnel were analyzed by the calculation results. The knowledge on mechanical behavior of segmented lining structure passing through an active ground fracture and surrounding soils was shown as following. The relative vertical displacement between segmented lining structure sects beside the ground fracture increases remarkably with the movement of ground fracture, and the segmented lining structure located in upward displaceent block near ground fracture originates notable rotary. Tension or compression deformation occured in the deformation joint between adjacent segmented lining structures near the ground fracture.There was a significant change in the contact pressure of the first sect of lining structure in the upward displace block. Under the same uniform settlement at the bottom of upward diaplacement block, the relativly vertical displacemtn on the surfaceof ground fracture strata without tunnel equals 50cm, but the relativly vertical displacement between adjacent segmented lining structure at ground fracture is 18.2cm on the design level of arch top of lining strcutre. the maximum tensile stress of segmented lining structure is 2.02MPa, the maximum compressive stress of segmented lining is 3.49MPa. In conclusion, segmented lining structure can adapts to the uneven settlement caused by the movement of ground fracture. Though maximum tensile and compressive stress of sengmented lining structure passing through the active ground fracture is bigger than the general lining structure located in soils strata without the ground fracture, the segmented lining structure constructed by the steel fibre concrete can bear with the maximum tensile stress.


2011 ◽  
Vol 97-98 ◽  
pp. 241-246
Author(s):  
Xiao Chun Zhang ◽  
Shu Shu Liu ◽  
Shi Kui Hu ◽  
Ning Zhang

The damage of void under cement concrete slab is one of the main diseases in cement concrete pavement. By finite element method, a 3-D model of cement concrete pavement structure was established to simulate the partial void under the cement concrete pavement slab with different loading conditions. The process of the division between the subgrade and the slab with a soft area under the slab are reappeared. The changing rules of the void size with the number of cycle load in case of different tie pressure and loading location (at the center, edge or corner of the slab).


2006 ◽  
Vol 33 (4) ◽  
pp. 471-488 ◽  
Author(s):  
A Ghani Razaqpur ◽  
Afshin Esfandiari

The effect of loading and geometric parameters on the transverse and longitudinal redistribution of moments in continuous composite bridges, comprising a concrete slab on parallel steel girders, is investigated with the nonlinear finite element method. Fifty bridges are analyzed over their entire range of loading up to failure, and their moment redistribution factors are determined and compared with the relevant predictions of the Canadian Highway Bridge Design Code (CHBDC) and the AASHTO LRFD Bridge Design Specifications. The parameters studied included truck position along the bridge, number of loaded lanes, bridge width, number of girders, slab thickness, degree of composite action, and presence of diaphragms. The study reveals that among the preceding parameters only the number of loaded lanes and the bridge width significantly affect transverse redistribution of moments at ultimate limit state (ULS). However, most of the preceding parameters affect longitudinal redistribution at ULS. Finally, it is demonstrated that plastic analysis of composite multi-girder continuous bridges, treated as an equivalent beam, provides a reasonable estimate of their longitudinal moment redistribution capacity at ULS. It is demonstrated that the actual load-carrying capacity of a composite bridge may be more than 50% higher than that predicted by the CHBDC or AASHTO code. Such higher predicted capacity may obviate the need for retrofit in some cases.Key words: analysis, bridge, composite, concrete, distribution, finite element, inelastic, load, steel.


2011 ◽  
Vol 12 (4) ◽  
pp. 259-264 ◽  
Author(s):  
Anirudh K Mathur ◽  
Vinaya S Pai ◽  
S Nandini ◽  
Anirban Sarmah

ABSTRACT Aim The purpose of this three-dimensional (3D) finite element study was to investigate orthodontic loading simulation on a single endosseous implant and its surrounding osseous structure, to analyze the resultant stresses and to identify the changes in the bone adjacent to the implant following orthodontic loading. Materials and methods Two models were constructed using finite element method consisting of endosseous dental implant and the surrounding bone. In the first model, the contact between the implant and the bone was simulated showing no osseointegration, while the second model showed 100% osseointegration. Simulated horizontal loads of 20 N, at 90° from the long axis, were applied to the top of the implant. The study simulated loads in a horizontal direction, similar to a distalmesial orthodontic movement. Results In the first model, the stress was mainly concentrated at the neck of the implant and at the closest surrounding bone. In the second model, the stress was chiefly concentrated at the neck of the implant at the level of the cortical superficial bone. The stresses decreased in the cancellous bone area. On the implant, the highest stress concentration was at the first cervical thread decreasing uniformly to the apex. The stress distribution on the mesial and distal sides showed that the maximum compressive stress was localized mesially and the maximum tensile stress distally. If both models are compared, it can be observed that the stresses were less and more evenly distributed in model 1 (initial stability) than in model 2 when osseointegration was assumed. Conclusion A lack of bony support for the implant represents an unfavorable situation from biomechanical point of view that should be considered and solved. As clinical problems mostly occur at the marginal bone region (bacterial plaque accumulation, overcontoured abutments, infections, osseous defects), attention should be focused on this region. Clinical significance When osseointegrated implants are primarily used as anchorage for orthodontic purposes and then as fixed prosthesis, the functional and structural union of titanium to bone should be preserved. How to cite this article Sarmah A, Mathur AK, Gupta V, Pai VS, Nandini S. Finite Element Analysis of Dental Implant as Orthodontic Anchorage. J Contemp Dent Pract 2011;12(4):259-264.


Sign in / Sign up

Export Citation Format

Share Document