Thermal Evaluation by Infrared Thermography Measurement of Osteotomies Performed with Er:YAG Laser, Piezosurgery and Surgical Drill—An Animal Study
The bone healing process following osteotomy may vary according to the type of surgical instrumentation. The aim of the present in vivo study was to determine thermal changes of the bone tissue following osteotomies performed by Er:YAG laser ablation in contact and non-contact modes, piezoelectric surgery, and surgical drill using an infrared thermographic camera. For each measurement, the temperature before the osteotomy-baseline (Tbase) and the maximal temperature measured during osteotomy (Tmax) were determined. Mean temperature (ΔT) values were calculated for each osteotomy technique. The significance of the difference of the registered temperature between groups was assessed by the ANOVA test for repeated measures. Mean baseline temperature (Tbase) was 27.9 ± 0.3 °C for contact Er:YAG laser, 29.9 ± 0.3 °C for non-contact Er:YAG laser, 29.4 ± 0.3 °C for piezosurgery, and 28.3 ± 0.3 °C for surgical drill. Mean maximum temperature (Tmax) was 29.9 ± 0.5 °C (ΔT = 1.9 ± 0.3 °C) for contact Er:YAG laser, 79.1 ± 4.6 °C (ΔT = 49.1 ± 4.4 °C) for non-contact Er:YAG laser, 29.1 ± 0.2 °C (ΔT = −0.2 ± 0.3 °C) for piezosurgery, and 27.3 ± 0.4 °C (ΔT = −0.9 ± 0.4 °C) for surgical drill. Statistically significant temperature changes were observed for the non-contact laser. The results of the study showed beneficial effects of the osteotomy performed by the Er:YAG laser used in the contact mode of working as well as for piezosurgery, reducing the potential overheating of the bone tissue as determined by means of infrared thermography.