Functional studies on the α6β4 integrin have focused primarily on its role in the organization of hemidesmosomes, stable adhesive structures that associate with the intermediate filament cytoskeleton. In this study, we examined the function of the α6β4 integrin in clone A cells, a colon carcinoma cell line that expresses α6β4 but no α6β1 integrin and exhibits dynamic adhesion and motility on laminin-1. Time-lapse videomicroscopy of clone A cells on laminin-1 revealed that their migration is characterized by filopodial extension and stabilization followed by lamellae that extend in the direction of stabilized filopodia. A function-blocking mAb specific for the α6β4 integrin inhibited clone A migration on laminin-1. This mAb also inhibited filopodial formation and stabilization and lamella formation. Indirect immunofluorescence microscopy revealed that the α6β4 integrin is localized as discrete clusters in filopodia, lamellae, and retraction fibers. Although β1 integrins were also localized in the same structures, a spatial separation of these two integrin populations was evident. In filopodia and lamellae, a striking colocalization of the α6β4 integrin and F-actin was seen. An association between α6β4 and F-actin is supported by the fact that α6β4 integrin and actin were released from clone A cells by treatment with the F-actin– severing protein gelsolin and that α6β4 immunostaining at the marginal edges of clone A cells on laminin-1 was resistant to solubilization with Triton X-100. Cytokeratins were not observed in filopodia and lamellipodia. Moreover, α6β4 was extracted from these marginal edges with a Tween-40/deoxycholate buffer that solubilizes the actin cytoskeleton but not cytokeratins. Three other carcinoma cell lines (MIP-101, CCL-228, and MDA-MB-231) exhibited α6β4 colocalized with actin in filopodia and lamellae. Formation of lamellae in these cells was inhibited with an α6-specific antibody. Together, these results indicate that the α6β4 integrin functions in carcinoma migration on laminin-1 through its ability to promote the formation and stabilization of actin-containing motility structures.