scholarly journals The Influence of Hydrated Lime and Cellulose Ether Admixture on Water Retention, Rheology and Application Properties of Cement Plastering Mortars

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5487
Author(s):  
Edyta Spychał ◽  
Ryszard Dachowski

In this article, the effect of hydrated lime and cellulose ether on the water retention, rheology, and application properties of plasters was studied. For mortars, the consistency, bulk density, and water retention were tested. Rheological measurements of pastes included yield stress and plastic viscosity. In addition to standard tests of mortars and examining the rheological properties of the pastes, a proprietary method for testing the application properties was proposed. The obtained research results made it possible to evaluate the performance of the tested plasters. An attempt was also made to correlate the rheological properties of pastes (plastic viscosity) to the water retention value. The influence of hydrated lime and cellulose ether on selected properties of pastes and plasters was also presented using the statistical Box–Behnken method. The subjective rating of an expert plasterer confirmed the necessity of the modification of plastering mortars with hydrated lime and cellulose ether. As shown, modification of cement plastering mortar with hydrated lime and cellulose ether at the same time allows obtaining a material with favorable technical and technological properties, especially mortars applied by machine.

Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2918 ◽  
Author(s):  
Ning Chen ◽  
Peiming Wang ◽  
Liqun Zhao ◽  
Guofang Zhang

In this paper, the effect of HPMC (hydroxypropyl methyl cellulose ether) on the cement mortar water retention (WR) and composition was studied. The relationship between the plastic viscosity and water retention of cement mortar was revealed. The results showed that HPMC formed a colloidal film with a 3D network structure in water, which changed the ability of water to migrate. The HPMC colloid adsorbed on the surface of cement and sand particles and played a bridging role due to the influence of the spatial network structure of the thin film. Fine particles formed a grid-like distribution, and the hydration products formed a unique fibrous tree-like structure. A positive correlation was observed between the plastic viscosity and the water holding capacity of cement mortar. Finally, the mechanism responsible for the improved water retention of cement mortar by HPMC was analyzed using the changing water migration capacity, migration channels, and mortar cohesion.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7634
Author(s):  
Edyta Spychał ◽  
Przemysław Czapik

In this article, the effect of cement type on selected properties of plastering mortars containing a cellulose ether admixture was studied. In the research, commercial CEM I Portland cement, CEM II and CEM III, differing in the type and amount of mineral additives, and cement class, were used as binders. Tests of consistency, bulk density, water retention value (WRV), mechanical properties and calorimetric tests were performed. It was proved that the type of cement had no effect on water retention, which is regulated by the cellulose ether. All mortars modified with the admixture were characterized by WRV of about 99%. High water retention is closely related to the action of the cellulose ether admixture. As a result of the research, the possibility of using cement with additives as components of plasters was confirmed. However, attention should be paid to the consistency, mechanical properties of the tested mortars and changes in the pastes during the hydration process. Different effects of additives resulted from increasing or decreasing the consistency of mortars; the flow was in the range from 155 mm to 169 mm. Considering the compressive strength, all plasters can be classified as category III or IV, because the mortars attained the strength required by the standard, of at least 3.5 MPa. The processes of hydration of pastes were carried out with different intensity. In conclusion, the obtained results indicate the possibility of using CEM II and CEM III cements to produce plastering mortars, without changing the effect of water retention.


2013 ◽  
Vol 33 (6) ◽  
pp. 551-555 ◽  
Author(s):  
Ke Yuan ◽  
Libing Liao ◽  
Yunhua Wang ◽  
Zepeng Zhang ◽  
Daimei Chen ◽  
...  

Abstract A series of acetate starch was synthesized and mixed with bentonite to prepare acetate starch/bentonite composite as a novel additive in order to improve the thixotropic property of cement mortar. The thixotropic index and water retention value of the fresh cement mortar containing acetate starch, bentonite, and acetate starch/bentonite composite, respectively, were measured with and without hydroxypropyl methyl cellulose ether (HPMC). Acetate starch with the degree of substitution (DS) of about 0.5 provided the largest increase in the thixotropic index of the cement mortar. Application of HPMC gave high water retention ability and viscosity to the mortar, but the thixotropic property was not improved. Adding acetate starch or starch/bentonite composite to the mortar can increase its thixotropic index, whereas no significant improvements on the water retention ability and viscosity of mortars were observed. By the combined use of acetate starch/bentonite composite with HPMC, the water retention value (WRV) of the mortar was as high as 98%, and its thixotropic index increased from 4.06 to 5.30, with a high value of viscosity.


2014 ◽  
Vol 79 (4) ◽  
pp. 457-468 ◽  
Author(s):  
Jaroslav Katona ◽  
Sandra Njaradi ◽  
Verica Sovilj ◽  
Lidija Petrovic ◽  
Brankica Marceta ◽  
...  

Rheological properties of mixtures of hydroxypropylmethyl cellulose (HPMC), a nonionic associative cellulose ether, and sodium dodecylsulfate (SDS), an anionic surfactant, were investigated by viscosity measurements performed at different shear rates (0.1-6000 s-1). HPMC/SDS mixtures containing different concentrations of SDS (CSDS=0.00-3.50 % w/w) and HPMC concentrations which corresponded to the overlap parameter c/c*=3, 6, and 12 were prepared. All HPMC/SDS mixtures were found to be shear-thinning when examined in a low-end-to mid-range of the applied shear rates. The degree of shear-thinning, n, and viscosity of the mixtures were influenced by composition of HPMC/SDS mixtures and HPMC-SDS complex formation. The changes in n ranged from values typical for highly shear thinning to almost perfectly Newtonian liquids, and were more pronounced as c/c* was increased from 3 to 6 and 12. A change in flow profile and a buildup of the first normal stress difference (N1) was observed in HPMC/SDS mixtures with c/c*=6 and 12 and CSDS 0.55-1.00 % and 0.55-2.50 %, respectively, when a critical shear rate, crit. was exceeded, suggesting that a shear-induced structure formation in the mixtures took place.


TAPPI Journal ◽  
2020 ◽  
Vol 19 (5) ◽  
pp. 239-246
Author(s):  
XIAONING SHEN ◽  
BO LI ◽  
WENXUAN MO ◽  
XIN-SHENG CHAI

This paper presents data on the effects of operational parameters (number of revolutions, linear pressure, and gap) of the PFI refiner on the swellability of recycled fiber, which was characterized by water retention value (WRV). The results showed that the increase of recycled fiber’s WRV was proportional to the number of revolutions and the linear pressure, but inversely proportional to the gap. The mathematical relation between these parameters and the fiber WRV could be described by an empirical model for gaps greater than 0.1 mm. Scanning electron microscopic images of fiber morphology showed that the basic framework of fibers could be maintained with the gap greater than 0.1 mm, but was destroyed with smaller gaps. This model provides a technical reference for quantitative control of refining treatment and an effective method for improving recycled fiber quality.


Author(s):  
Jacek Gołaszewski ◽  
Zbigniew Giergiczny ◽  
Tomasz Ponikiewski ◽  
Aleksandra Kostrzanowska-Siedlarz ◽  
Patrycja Miera

The paper presents the results of research into the influence of calcareous fly ash (CFA) processing methods on the rheological properties of mortars. The study consisted of a comparison of changes of the rheological properties (plastic viscosity and yield value) of the mortars during 90 minutes when CFA, unprocessed or processed by grinding, grain separation, or selective collection from the filter, was used as a substitute for a part of the cement. The results show that processing of CFA decreases its negative influence on the rheological properties; the efficient methods are separation or grinding, while the effect of selective collection is almost insignificant.


Holzforschung ◽  
2010 ◽  
Vol 64 (2) ◽  
Author(s):  
Iiro Pulkkinen ◽  
Juha Fiskari ◽  
Ville Alopaeus

Abstract The activation parameter developed is based on the fiber wall thickness distribution, fiber curl distribution, and water retention value of the unrefined fibers. The mechanical properties of paper that contain chemical pulp depend, among other things, on the free fiber segment activation between fiber-fiber crossings that is created during drying. Experimental data revealed that the degree of fiber swelling is responsible together with the fiber shape factor (curl) and fiber wall thickness for the extent of fiber network activation. The amount of bonding between fibers also affects fiber segment activation. Based on the experimental data, it was deduced that interfiber bonding ability of fibers, characterized as the water retention value, was mainly responsible for the development of handsheet density. Tensile index development was more affected by the morphology of fibers, which was the main determinant for high activation potential of fibers. Factor analysis was used to identify the main causes of variation for a refining data set of 20 Eucalyptus grandis samples. Three independent descriptors were found to be responsible for the majority of the variation: the bonding and activation factor, the factor of microcompressions, and the factor of fiber wall thickness and fiber curl. The activation parameter developed in this study can be used to determine the effect of fiber segment activation and inter-fiber bonding on the inplane mechanical properties of paper.


Author(s):  
Przemysław Buczynski ◽  
Marek Iwanski

This article presents a laboratory evaluation of the viscoelastic properties of recycled base courses produced with different fillers. The aim of this study was to investigate the influence of loading time and temperature on the complex modulus (E*) and the phase angle (6) of recycled base courses with respect to selected additives used. The mixtures contained reclaimed asphalt pavement RAP, crushed stone from existing base courses and virgin aggregate. Foamed bitumen 50/70 at 2.5% was used as a binder. The hydraulic binder constituted 3.0% of the recycled base course mixture. Portland cement, hydrated lime and cement kiln dust CKD were added as fillers. Evaluation of rheological properties of recycled base courses according to selected additives was carried out to the procedure set out in EN 12697-26 annex D. The evaluation of stiffness modulus was conducted in the direct tension- compression test on cylindrical samples (DTC-CY). The samples were subjected to the cycles of sinusoidal strain with an amplitude Bo < 25μB. All tests were performed over a range of temperatures (5 ºC, 13 ºC, 25 ºC, 40 ºC) and loading times (0.1 Hz, 0.3 Hz, 1 Hz, 3 Hz, 10 Hz, 20 Hz). The results were used to model stiffness modulus master curves of the recycled base courses containing selected additives in the hydraulic binder.


Sign in / Sign up

Export Citation Format

Share Document