scholarly journals Biomolecular, Histological, Clinical, and Radiological Analyses of Dental Implant Bone Sites Prepared Using Magnetic Mallet Technology: A Pilot Study in Animals

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6945
Author(s):  
Gianmario Schierano ◽  
Domenico Baldi ◽  
Bruno Peirone ◽  
Mitzy Mauthe von Degerfeld ◽  
Roberto Navone ◽  
...  

Background. A new instrumentation exploiting magneto-dynamic technology (mallet) proposed for implant site preparation was investigated. Methods. In the tibias of three minipigs, two sites were prepared by mallet and two by drill technique. Primary stability (ISQ) was detected after implant positioning (T0) and at 14 days (T14). X-rays and computed tomography were performed. At T14, bone samples were utilized for histological and biomolecular analyses. Results. In mallet sites, histological evaluations evidenced a significant increase in the newly formed bone, osteoblast number, and a smaller quantity of fibrous tissue. These results agree with the significant BMP-4 augmentation and the positive trend in other osteogenic factors (biological and radiological investigations). Major, albeit IL-10-controlled, inflammation was present. For both techniques, at T14 a significant ISQ increase was evidenced, but no significant difference was observed at T0 and T14 between the mallet and drill techniques. In mallet sites, lateral bone condensation was observed on computed tomography. Conclusions. Using biological, histological, clinical, and radiological analyses, this study first shows that the mallet technique is effective for implant site preparation. Based on its ability to cause osseocondensation and improve newly formed bone, mallet technology should be chosen in all clinical cases of poor bone quality.

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1147
Author(s):  
Alessio Danilo Inchingolo ◽  
Angelo Michele Inchingolo ◽  
Ioana Roxana Bordea ◽  
Edit Xhajanka ◽  
Donato Mario Romeo ◽  
...  

Many different osteotomy procedures has been proposed in the literature for dental implant site preparation. The osseodensification is a drilling technique that has been proposed to improve the local bone quality and implant stability in poor density alveolar ridges. This technique determines an expansion of the implant site by increasing the density of the adjacent bone. The aim of the present investigation was to evaluate the effectiveness of the osseodensification technique for implant site preparation through a literature review and meta-analysis. The database electronic research was performed on PubMed (Medline) database for the screening of the scientific papers. A total of 16 articles have been identified suitable for the review and qualitative analysis—11 clinical studies (eight on animals, three on human subjects), four literature reviews, and one case report. The meta-analysis was performed to compare the bone-to-implant contact % (BIC), bone area fraction occupied % (BAFO), and insertion torque of clockwise and counter-clockwise osseodensification procedure in animal studies. The included articles reported a significant increase in the insertion torque of the implants positioned through the osseodensification protocol compared to the conventional drilling technique. Advantages of this new technique are important above all when the patient has a strong missing and/or low quantity of bone tissue. The data collected until the drafting of this paper detect an improvement when the osseodensification has been adopted if compared to the conventional technique. A significant difference in BIC and insertion torque between the clockwise and counter-clockwise osseodensification procedure was reported, with no difference in BAFO measurements between the two approaches. The effectiveness of the present study demonstrated that the osseodensification drilling protocol is a useful technique to obtain increased implant insertion torque and bone to implant contact (BIC) in vivo. Further randomized clinical studies are required to confirm these pieces of evidence in human studies.


2019 ◽  
Vol 45 (4) ◽  
pp. 259-266
Author(s):  
Claudio Stacchi ◽  
Matteo De Biasi ◽  
Lucio Torelli ◽  
Massimo Robiony ◽  
Roberto Di Lenarda ◽  
...  

The primary objective of the present in vitro study was to evaluate the influence of implant site preparation technique (drills vs ultrasonic instrumentation) on the primary stability of short dental implants with two different designs inserted in simulated low-quality cancellous bone. Eighty implant sites were prepared in custom-made solid rigid polyurethane blocks with two different low cancellous bone densities (5 or 15 pounds per cubic foot [PCF]), equally distributed between piezoelectric (Surgysonic Moto, Esacrom, Italy) and conventional drilling techniques. Two short implant systems (Prama and Syra, Sweden & Martina) were tested by inserting 40 fixtures of each system (both 6.0 mm length and 5.0 mm diameter), divided in the four subgroups (drills/5 PCF density; drills/15 PCF density; piezo/5 PCF density; piezo/15 PCF density). Insertion torque (Ncm), implant stability quotient values, removal torque (Ncm), and surgical time were recorded. Data were analyzed by 3-way ANOVA and Scheffé's test (α = 0.05). With slight variations among the considered dependent variables, overall high primary implant stability was observed across all subgroups. Piezoelectric instrumentation allowed for comparable or slightly superior primary stability in comparison with the drilling procedures in both implant systems. The Prama implants group showed the highest mean reverse torque and Syra implants the highest implant stability quotient values. Piezoelectric implant site preparation took prolonged operative time compared to conventional preparation with drills; among the drilling procedures, Syra system required fewer surgical steps and shorter operative time.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Michele Maglione ◽  
Lorenzo Bevilacqua ◽  
Federica Dotto ◽  
Fulvia Costantinides ◽  
Felice Lorusso ◽  
...  

Purpose. Recent advances show that ultrasonic implant site osteotomy is related to a decreased trauma and a better postoperative healing of the surgical site when compared to traditional drilling techniques. The micrometric bone cutting control and the operative advantages related to the piezoelectric approach are also characterized by a learning curve for the clinician in surgical practice and an increased operative duration of the procedure. The aim of this investigation is to compare the operative time, the postoperative pain, and the amount of painkillers taken by the patient during the healing period. Methods. A total of 65 patients were treated at the Unit of Oral Surgery (Department of Medical Sciences, Surgery and Health, University of Trieste, Italy) using a split mouth model: 75 drill-inserted implants (G1) and 75 piezoelectric device-inserted implants (G2) were placed. The Visual Analogue Scale (VAS) was performed to evaluate the postoperative pain at 15 days from surgery. The operative time and frequency of intake of painkillers were measured. Results. The G1 and G2 groups showed a significant difference with a higher use of painkillers observed for G1. The G2 patients showed a lower level of pain (VAS) at all experimental times between 8 hours to 7 days (p<0.01) postsurgery. At 15 days, the pain levels were similar for both groups. No differences were found in site preparation duration between the study groups. Conclusions. The evidence supports the application of the piezoelectric approach compared to the drill’s osteotomy as a useful technique for implant site preparation. This trial is registered with NCT03978923.


Author(s):  
Janina Golob Deeb ◽  
Anja Frantar ◽  
George R. Deeb ◽  
Caroline K. Carrico ◽  
Ksenija Rener-Sitar

The aim of this randomized in vitro study was to compare the time and accuracy of implant site preparation and implant placement using a trephine drill versus a conventional drilling technique under dynamic navigation. A total of 42 implants were placed in simulation jaw models with the two drilling techniques by two operators with previous experience with dynamic navigation. The timing of each implant placement was recorded, and horizontal, vertical, and angulation discrepancies between the planned and placed implants were compared. There was no significant difference in time or accuracy between the trephine and conventional drilling techniques. Implant site preparation with a single trephine drill using dynamic navigation was as accurate under in vitro experimental conditions as a conventional drilling sequence.


2018 ◽  
Vol 44 (5) ◽  
pp. 400-405 ◽  
Author(s):  
Daniel Isaac Sendyk ◽  
Natacha Kalline de Oliveira ◽  
Claudio Mendes Pannuti ◽  
Maria da Graça Naclério-Homem ◽  
Ann Wennerberg ◽  
...  

The aim of this study was to evaluate if the stability of dental implants varies between dental implants placed by piezosurgery compared with those placed by conventional drilling. An electronic search in MEDLINE, SCOPUS, and the Cochrane Library was undertaken until August 2016 and was supplemented by manual searches and by unpublished studies at OpenGray. Only randomized controlled clinical trials that reported implant site preparation with piezosurgery and with conventional drilling were considered eligible for inclusion in this review. Meta-analyses were performed to evaluate the impact of piezosurgery on implant stability. Of 456 references electronically retrieved, 3 were included in the qualitative analysis and quantitative synthesis. The pooled estimates suggest that there is no significant difference between piezosurgery and conventional drilling at baseline (weighted mean differences [WMD]: 2.20; 95% confidence interval [CI]: −5.09, 9.49; P = .55). At 90 days, the pooled estimates revealed a statistically significant difference (WMD: 3.63; 95% CI: 0.58, 6.67, P = .02) favoring piezosurgery. Implant stability may be slightly improved when osteotomy is performed by a piezoelectric device. More randomized controlled clinical trials are needed to confirm these findings.


2014 ◽  
Vol 23 (1) ◽  
pp. 79-84 ◽  
Author(s):  
Shweta A. Gandhi ◽  
Justin A. Baker ◽  
Latifa Bairam ◽  
Hyeong-Il Kim ◽  
Elaine L. Davis ◽  
...  

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Hassan Mohajerani ◽  
Gholamreza Irajian ◽  
Fatemeh Latifi ◽  
Faramarz Masjedian ◽  
Reza Tabrizi

Abstract Background Clindamycin in low concentration (20 μg/mL) is safe for vitality and osteogenic potential of bone cells. The aim of this study was to evaluate the efficacy of local clindamycin (20 μg/mL) in two different exposure times, for microbial decontamination of particulate bone graft, collected during implant site preparation. This non-randomized parallel-group study was conducted on samples from 17 patients. The particulate bone collected during implant site preparation was divided into three portions by weight: in group S1, the particulate bone was immersed in thioglycolate broth without any antibiotic treatment; in group S2, the collected particulate bone was irrigated with 100 mL clindamycin solution (20 μg/mL); and in group S3, the collected particulate bone was soaked in one ml clindamycin solution (20 μg/mL) for 3 min. Samples in the three groups were cultured in aerobic and anaerobic media and species and CFU count of isolated bacteria were determined. Results Analysis of the data demonstrated a significant difference among the three groups in the mean count of total microorganisms (P = 0.001). The difference in the mean count of anaerobic and aerobic microorganisms in the three groups was statistically significant as well (P = 0.001). Pseudomonas aeruginosa was the only microorganism that was not affected with the mentioned antibiotic. Conclusions Local use of low-dose clindamycin (20 μg/mL)—irrigation or 3 min immersing—is effective for the decontamination of particulate bone grafts.


2009 ◽  
Vol 79 (4) ◽  
pp. 609-614 ◽  
Author(s):  
Benedict Wilmes ◽  
Dieter Drescher

Abstract Objective: To test the hypothesis that the impact of the insertion depth and predrilling diameter have no effect on the primary stability of mini-implants. Materials and Methods: Twelve ilium bone segments of pigs were embedded in resin. After implant site preparation with different predrilling diameters (1.0, 1.1, 1.2, and 1.3 mm), Dual Top Screws 1.6 × 10 mm (Jeil, Korea) were inserted with three different insertion depths (7.5, 8.5, and 9.5 mm). The insertion torque was recorded to assess primary stability. In each bone, five Dual Top Screws were used as a reference to compensate for the differences of local bone quality. Results: Both insertion depth and predrilling diameter influenced the measured insertion torques distinctively: the mean insertion torque for the insertion depth of 7.5 mm was 51.62 Nmm (±25.22); for insertion depth of 8.5 mm, 65.53 Nmm (±29.99); and for the insertion depth of 9.5 mm, 94.38 Nmm (±27.61). The mean insertion torque employing the predrill 1.0 mm was 83.50 Nmm (±33.56); for predrill 1.1 mm, 77.50 Nmm (±27.54); for the predrill 1.2 mm, 61.70 Nmm (±28.46); and for the predrill 1.3 mm, 53.10 (±32.18). All differences were highly statistically significant (P &lt; .001). Conclusions: The hypothesis is rejected. Higher insertion depths result in higher insertion torques and thus primary stability. Larger predrilling diameters result in lower insertion torques.


Sign in / Sign up

Export Citation Format

Share Document