scholarly journals Dynamics Modelling and Control of a Novel Fuel Metering Valve Actuated by Two Binary-Coded Digital Valve Arrays

Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 55
Author(s):  
Qiang Gao ◽  
Yong Zhu ◽  
Jinhua Liu

A fuel metering valve actuated by two binary-coded digital valve arrays (BDVAs) is proposed to improve the reliability of conventional fuel metering valves piloted by a servo valve. The design concept of this configuration is obtained from the structural characteristics of the dual nozzle-flapper and the flow regulation method of the digital hydraulic technology. The structure and working principle of the fuel metering valve are presented. Then, a mathematical model of the entire valve is developed for dynamic analysis. Subsequently, the mechanism of the transient flow uncertainty of the BDVA is revealed through simulation to determine the fluctuation in the velocity of the fuel metering valve. Furthermore, step response indicates that the delay time of the fuel metering valve is within 4.1 ms. Finally, to improve the position tracking accuracy of the fuel metering valve, a velocity feedforward proportional-integral controller with pulse code modulation is proposed. A series of comparative analyses indicate that compared with those of the velocity feedforward controller, the average and standard deviation of the position error for the proposed controller are reduced by 78 and 72.7%, respectively. The results prove the feasibility of the proposed valve and the effectiveness of the proposed control strategy.

2013 ◽  
Vol 717 ◽  
pp. 541-545
Author(s):  
Young Sup Lee

This paper presents the effect of an integral feedback controller for minimizing the pointing error at the tip of a very flexible and slender cantilever beam to follow a command signal. A piezoeletric PZT actuator patch isbonded on near the clamped end of the cantilever beam. Also it is considered that a position sensor is located near the tip of the beam but it is not attached on the beam. The beam is designed to be lightly damped and its step response withoutcontrol is quite long. But because of the non-collocation of the sensor and actuator, the plant response is non-minimum phase. After an intensive computer simulation, it is noted that the integral controller can reduce the settling time with proper stability and control gains. Also an analysis and comparison of the integral controller with a proportional-integral controller for the pointing error minimization of the very flexible and slender beam is described in detail.


2019 ◽  
Vol 17 (3) ◽  
pp. 385
Author(s):  
Nikola Danković ◽  
Dragan Antić ◽  
Saša Nikolić ◽  
Marko Milojković ◽  
Staniša Perić

A new class of cascade digital orthogonal filters of the Malmquist type based on bilinear transformation for mapping poles to zeroes and vice versa is presented in this paper. In a way, it is a generalization of the majority of the classical orthogonal filters and some newly designed filters as well. These filters are orthogonal with respect to the generalized inner product which is actually a generalization of the classical inner product. Outputs of these filters are obtained by using polynomials orthogonal with respect to the new inner product. The main quality of these filters is that they are parametric adaptive. The filter with six sections is practically realized in the Laboratory for Modeling, Simulation and Control Systems. Performances of the designed filter are proved on modeling and identification of the system for differential pulse code modulation. Real response and response from the proposed filter are compared with regard to the chosen criteria function. Also, a comparative analysis of the proposed filter with some existing filters is performed.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yong Liu ◽  
Gang Li ◽  
Yuchen Li ◽  
Yahui Wu

This study develops a novel neural-approximation-based prescribed performance controller for flexible hypersonic flight vehicles (HFVs). Firstly, a new prescribed performance mechanism is exploited, which develops new performance functions guaranteeing velocity and altitude tracking errors with small overshoots. Compared with the existing prescribed performance mechanism, it has better preselected transient and steady-state performance. Then, the nonaffine model of HFV is decomposed into a velocity subsystem and an altitude subsystem. A prescribed performance-based proportional-integral controller is designed in the velocity subsystem. In the altitude subsystem, the model is expressed as a nonaffine pure feedback form, and control inputs are derived from neural approximations. In order to reduce the amount of computation, only one neural network approximator is used to approximate the subsystem uncertainties, and an advanced regulation algorithm is applied to the devise adaptive law for neural estimation. At the same time, the complex design process of back-stepping can be avoided. Finally, numerical simulation results are presented to verify the efficiency of the design.


2015 ◽  
Vol 9 (1) ◽  
pp. 5-13 ◽  
Author(s):  
Andrei Aksjonov ◽  
Valery Vodovozov ◽  
Eduard Petlenkov

Abstract The mathematical model of the three-dimensional crane using the Euler-Lagrange approach is derived. A state-space representation of the derived model is proposed and explored in the Simulink® environment and on the laboratory stand. The obtained control design was simulated, analyzed and compared with existing encoder-based system provided by the three-dimensional (3D) Crane manufacturer Inteco®. As well, an anti-swing fuzzy logic control has been developed, simulated, and analyzed. Obtained control algorithm is compared with the existing anti-swing proportional-integral controller designed by the 3D crane manufacturer Inteco®. 5-degree of freedom (5DOF) control schemes are designed, examined and compared with the various load masses. The topicality of the problem is due to the wide usage of gantry cranes in industry. The solution is proposed for the future research in sensorless and intelligent control of complex motor driven application.


2020 ◽  
Vol 2 (1) ◽  
pp. 25-29
Author(s):  
Nasir Ahmed Alawad

Distillation is the separation strategy in the oil and compound businesses for cleansing of conclusive items. This paper deals with the reduced dynamic model and control of the distillation tower by applying a multi-loop control framework in Matlab/Simulink for a double blend. The structure objective considered is to guarantee that the top item, the base item, the reflux rate and the reboiler rate stray inside their recommended limits forever and for all the aggravations. This paper proposes an optimal tuning method for fractional Proportional-Integral controller (FPI). The method consists of minimizing Integral Absolute Error (IAE) performance index criterion. Acceptable controller (FPI) is acquired via looking in the space of plan boundaries (Kp,Ki). An example of application (distillation column) plant is presented to evaluate the proposed method. A comparison with classical PI controller and optimal PI shows that the system under fractional state is robust in terms of transient specifications, maximum overshot, settling and rise times. The simulation results shows that more than (21%) improvement for reducing the max-overshot and(65%)improvement for increasing response speed for fractional PI compared with classical PI.MATLAB simulation toolbox is used to show the effectives of the proposed method.


Author(s):  
Viyils Sangregorio-Soto ◽  
Claudia L. Garzon-Castro ◽  
Gianfranco Mazzanti ◽  
Manuel Figueredo ◽  
John A. Cortes-Romero

Sign in / Sign up

Export Citation Format

Share Document